已知-
π
2
≤α≤
π
2
,0≤β≤π,則2α-
β
2
的范圍是
[-
2
,π]
[-
2
,π]
分析:由已知,分別求出2α,-
β
,2
 的取值范圍,再利用不等式的可加性求解.
解答:解:∵-
π
2
≤α≤
π
2
,∴-π≤2α≤π,①
∵0≤β≤π,∴-π≤-β≤0,-
π
2
≤-
β
2
≤0②
①②兩式左右兩邊分別相加得,2α-
β
2
[-
2
,π]

故答案為:[-
2
,π]
點(diǎn)評(píng):本題考查了不等式的基本性質(zhì).注意多個(gè)同向不等式兩邊不能相減,如本題應(yīng)將2α-
β
2
看作2α+(-
β
2
)來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α+2β=
3
,α和β為銳角;
(1)若tan(α+β)=2+
3
;求β;
(2)若tanβ=(2-
3
)cot
α
2
,滿足條件的α和β是否存在?若存在,請(qǐng)求出α和β的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,問(wèn):m在什么范圍取值時(shí),函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間(2,3)上總存在極值?
(3)當(dāng)a=2時(shí),設(shè)函數(shù)g(x)=(ρ-2)x+
ρ+2
x
-3
,若對(duì)任意地x∈[1,2],f(x)≥g(x)恒成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(2)=1,f′(x)為f(x)的導(dǎo)函數(shù).已知y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a,b滿足f(2a+b)>1,則
b-1
a-2
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系x0y中,已知曲線C的參數(shù)方程是
x=
2
cosθ+1
y=
2
sinθ+1
(θ是參數(shù)),則曲線C的普通方程是
(x-1)2+(y-1)2=2
(x-1)2+(y-1)2=2
,若以o為極點(diǎn),x軸的正半軸為極軸,則曲線C的極坐標(biāo)方程為
ρ=2
2
cos(θ-
π
4
)
ρ=2
2
cos(θ-
π
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1-ax)n展開(kāi)式的第r,r+1,r+2三項(xiàng)的二次式系數(shù)構(gòu)成等差數(shù)列,第n+1-r與第n+2-r項(xiàng)的系數(shù)之和為0,而(1-ax)n+1展開(kāi)式的第r+1與r+2項(xiàng)的二項(xiàng)式系數(shù)之比為1:2.
(1)求(1-ax)n+1展開(kāi)式的中間項(xiàng);
(2)求(1-ax)n的展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案