【題目】已知命題:函數(shù)的圖像恒過定點;命題:若函數(shù)為偶函數(shù),則函數(shù)的圖象關于直線對稱,則下列命題為真命題的是( )

A. B. C. D.

【答案】B

【解析】

由函數(shù)的平移變換及對數(shù)函數(shù)恒過的定點,得到命題p假,則¬p真;由函數(shù)的奇偶性,對軸稱和平移得到命題q假,則命題¬q真,由此能求出結果.

函數(shù)的圖象可看作把y的圖象先向右平移1個單位,再向上平移1個單位得到,

y的圖象恒過(1,0),所以函數(shù)y恒過(2,1)點,所以命題p假,則¬p真;

函數(shù)fx﹣1)為偶函數(shù),則其對稱軸為x=0,而函數(shù)fx)的圖象是把yfx﹣1)向左平移了1個單位,

所以fx)的圖象關于直線x=﹣1對稱,所以命題q假,則命題¬q真.

綜上可知,四個選項只有命題為真命題.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】件產品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽.求:(1)第一次抽到次品的概率;

2)第一次和第二次都抽到次品的概率;

3)在第一次抽到次品的條件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

1)寫出曲線和直線的直角坐標方程;

2)若直線軸交點記為,與曲線交于兩點,Qx軸下方,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1~2010中選出總和為10067791005個數(shù),且這1005個數(shù)中任意兩數(shù)之和都不等于2011.

(1)證明: 為定值;

(2)取最小值時 中所有小于1005的數(shù)之和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)討論的單調性;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在坐標原點,其焦點軸正半軸上,為直線上一點,圓軸相切(為圓心),且關于點對稱.

(1)求圓和拋物線的標準方程;

(2)過的直線交圓兩點,交拋物線,兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,a為實數(shù).

(1)當函數(shù)的圖像在上與x軸有唯一的公共點時,求實數(shù)a的取值范圍;

(2)當時,求函數(shù)上的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,平面,,AP=AD=2AB=2BC,點在棱上.

(Ⅰ)求證:

(Ⅱ)當平面時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正四面體ABCD的棱長為2,球O與四面體的面ABC和面DBC都相切,其切點分別在△ABC和△DBC內(含邊界),且球O與棱AD相切.

(1)證明:球O的球心在棱AD的中垂面上;

(2)求球O的半徑的取值范圍.

查看答案和解析>>

同步練習冊答案