【題目】設(shè)函數(shù)f(x)= cos2x+sin2(x+ ). (Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當x∈[﹣ , )時,求f(x)的取值范圍.
【答案】解:(Ⅰ)f(x)= cos2x+sin2(x+ ). f(x)= cos2x+
f(x)= cos2x+ sin2x+
f(x)=sin(2x+ )+ ,
最小正周期 ,
∵sinx單調(diào)遞增區(qū)間為[2kπ﹣ ,2kπ+ ],(k∈Z)
∴2x+ ∈[2kπ﹣ ,2kπ+ ],(k∈Z)
解得:x∈[ , ],(k∈Z)
∴f(x)的最小正周期為π;單調(diào)遞增區(qū)間為[ , ],(k∈Z)
(Ⅱ)由(Ⅰ)得:f(x)=sin(2x+ )+
∵x∈[﹣ , ),
∴2x+ ∈[ , ],
由三角函數(shù)的圖像和性質(zhì):
可知:當2x+ = 時,f(x)取得最小值,即 =0.
當2x+ = 時,f(x)取得最大值,即 .
∴x∈[﹣ , )時,f(x)的取值范圍在
【解析】(Ⅰ)先利用兩角和余差的基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;(Ⅱ)x∈[﹣ , )時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖像和性質(zhì),求出f(x)的取值最大和最小值,即得到f(x)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱錐P﹣ABC中,CM=2PM,CN=2NB,對于以下結(jié)論:
①二面角B﹣PA﹣C大小的取值范圍是( ,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為 ;
③過點M與異面直線PA和BC都成 的直線有3條;
④若二面角B﹣PA﹣C大小為 ,則過點N與平面PAC和平面PAB都成 的直線有3條.
正確的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,隔河看兩目標A、B,但不能到達,在岸邊選取相距 km的C、D兩點,并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內(nèi)),求兩目標A、B之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
點P是曲線C1:(x-2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸
建立極坐標系,將點P繞極點O逆時針90得到點Q,設(shè)點Q的軌跡為曲線C2.
求曲線C1,C2的極坐標方程;
射線= (>0)與曲線C1,C2分別交于A,B兩點,定點M(2,0),求MAB的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sinx的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移 個單位,得到的圖象對應(yīng)的解析式是( )
A.y=sin(2x+ )
B.y=sin( x+ )
C.y=sin( x+ )
D.y=sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強市民的環(huán)境保護組織,某市面向全市征召n名義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組織,現(xiàn)按年齡把該組織的成員分成5組:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的頻率分布直方圖如圖所示,已知該組織的成員年齡在[35,40)內(nèi)有20人
(1)求該組織的人數(shù);
(2)若從該組織年齡在[20,25),[25,30),[30,35)內(nèi)的成員中用分層抽樣的方法共抽取14名志愿者參加某社區(qū)的宣傳活動,問應(yīng)各抽取多少名志愿者?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為圓的直徑,點, 在圓上, ,矩形和圓所在的平面互相垂直,已知, .
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大。
(Ⅲ)當的長為何值時,二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中: ①|(zhì)BM|是定值;
②點M在圓上運動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.
其中正確的命題是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x+1)的定義域是[﹣1,3],則y=f(x2)的定義域是( )
A.[0,4]
B.[0,16]
C.[﹣2,2]
D.[1,4]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com