(1)求的值;
(2)求的值.

(1);(2)

解析試題分析:(1)初中所學(xué)單項式與多項式的運算法則和乘法公式,當指數(shù)變成分數(shù)時仍然適用;(2)對數(shù)的運算一般要轉(zhuǎn)化為同底數(shù)的對數(shù)才能運用對數(shù)的運算法則.
試題解析:(1)
(2)原式=

考點:(1)指數(shù)的運算;(2)對數(shù)的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,, 
(1)求函數(shù)的解析式,并求它的單調(diào)遞增區(qū)間;
(2)若有四個不相等的實數(shù)根,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點,函數(shù)的圖象上的動點軸上的射影為,且點在點的左側(cè).設(shè),的面積為.

(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實數(shù),函數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足,對任意都有,且
(1)求函數(shù)的解析式;
(2)是否存在實數(shù),使函數(shù)上為減函數(shù)?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量毫克)與時間(小時)成正比;藥物釋放完畢后,的函數(shù)關(guān)系式為為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:

(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室.那從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

記數(shù)列{}的前n項和為為,且+n=0(n∈N*)恒成立.
(1)求證:數(shù)列是等比數(shù)列;
(2)已知2是函數(shù)f(x)=+ax-1的零點,若關(guān)于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費,預(yù)計當每件商品的售價為元時,一年的銷售量為萬件.
(Ⅰ)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;
(Ⅱ)當每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

近年來,網(wǎng)上購物已經(jīng)成為人們消費的一種趨勢。假設(shè)某淘寶店的一種裝飾品每月的銷售量y(單位:千件)與銷售價格x(單位:元/件)滿足關(guān)系式其中2<x<6,m為常數(shù),已知銷售價格為4元/件時,每月可售出21千件。(1)求m的值; (2)假設(shè)該淘寶店員工工資、辦公等每月所有開銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價格x的值,使該店每月銷售飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案