已知函數(shù)f(x)在(1,+∞)上遞增,且f(2)=0,
(1)求函數(shù)f[log2(x2-4x-3)]的定義域,
(2)解不等式f[log2(x2-4x-3)]≥0.
分析:(1)根據(jù)函數(shù)f(x)的定義域為(1,+∞),構(gòu)造對數(shù)不等式log2(x2-4x-3)>1,解不等式即可求出函數(shù)f[log2(x2-4x-3)]的定義域.
(2)由函數(shù)f(x)在(1,+∞)上遞增,且f(2)=0,構(gòu)造對數(shù)不等式log2(x2-4x-3)≥2,解不等式即可得到答案.
解答:解:(1)函數(shù)f(x)在(1,+∞)上遞增,則有l(wèi)og
2(x
2-4x-5)>1,
即log
2(x
2-4x-3)>log
22,
所以 x
2-4x-3>2即 x
2-4x-5>0
∴x>5或x<-1函數(shù)定義域為 (-∞,-1)∪(5,+∞)
(2)已知函數(shù)f(x)在(1,+∞)上遞增,
又f(2)=0,
不等式即 f[log
2(x
2-4x-3)]≥f(2)
故 log
2(x
2-4x-3)≥2
即 x
2-4x-3≥4∴x
2-4x-7≥0
解得
x≥2+或x≤2-則知 不等式的解集為
(2+,+∞)∪(-∞,2-) 點評:本題考查的知識點是函數(shù)的定義域及其求法,對數(shù)函數(shù)的定義域,對數(shù)函數(shù)的單調(diào)性與特殊點,其中根據(jù)已知條件,構(gòu)造出滿足條件的對數(shù)不等式是解答本題的關(guān)鍵.