(本題滿分12分)已知三次函數(shù)的導(dǎo)函數(shù),

,為實(shí)數(shù)。

(1)若曲線在點(diǎn)(,)處切線的斜率為,求的值;

(2)若在區(qū)間上的最小值、最大值分別為,且,求函數(shù)解析式。

 

【答案】

(1)

(2)=

【解析】(1)由導(dǎo)數(shù)的幾何意義=12  ……………1分

  ……………2分     ∴   ∴   ……………3分

      (2)∵ , ∴   ……5分

        由  得,

  ∵ [-1,1],        ∴ 當(dāng)[-1,0)時(shí),,遞增;

當(dāng)(0,1]時(shí),遞減。……………8分

在區(qū)間[-1,1]上的最大值為

,∴ =1 ……………………10分  

  ∵ ,

 ∴ 是函數(shù)的最小值,    ∴   ∴

  ∴ =  ………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、、所對(duì)的邊分別為、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).

(1)若,且,,求、的坐標(biāo);

(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案