A. | [$\frac{1}{3}$,$\frac{4}{3}$] | B. | [-$\frac{4}{3}$,-$\frac{1}{3}$] | C. | [$\frac{3}{4}$,3] | D. | [-3,-$\frac{3}{4}$] |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識即可得到結(jié)論.
解答 解:即直線x+my+1=0過定點D(-1,0)
作出不等式組對應(yīng)的平面區(qū)域如圖:
當(dāng)m=0時,直線為x=-1,此時直線和平面區(qū)域沒有公共點,
故m≠0,x+my+1=0的斜截式方程為y=$-\frac{1}{m}$x$-\frac{1}{m}$,
斜率k=$-\frac{1}{m}$,
要使直線和平面區(qū)域有公共點,則直線x+my+1=0的斜率k>0,
即k=$-\frac{1}{m}$>0,即m<0,滿足kCD≤k<kAB,
此時AB的斜率kAB=2,
由$\left\{\begin{array}{l}{x+y-3=0}\\{x-2=0}\end{array}\right.$解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即C(2,1),
CD的斜率kCD=$\frac{0-1}{-1-2}$=$\frac{1}{3}$,
由$\left\{\begin{array}{l}{2x-y=0}\\{x-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即A(2,4),
AD的斜率kAD=$\frac{4-0}{2-(-1)}$=$\frac{4}{3}$,
即$\frac{4}{3}$≤k≤$\frac{1}{3}$,
則$\frac{4}{3}$≤$-\frac{1}{m}$≤$\frac{1}{3}$,
解得-3≤m≤-$\frac{3}{4}$,
故選:D.
點評 本題主要考查線性規(guī)劃以及斜率的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{BC}{sinα}=\frac{AD}{sinβ}$ | B. | $\frac{AD}{sinα}=\frac{BC}{sinβ}$ | ||
C. | $\frac{{{S_{△BCD}}}}{sinα}=\frac{{{S_{△ACD}}}}{sinβ}$ | D. | $\frac{{{S_{△ACD}}}}{sinα}=\frac{{{S_{△BCD}}}}{sinβ}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com