(本小題滿分14分)

 已知圓方程為:.

(Ⅰ)直線過點,且與圓交于、兩點,若,求直線的方程;

(Ⅱ)過圓上一動點作平行于軸的直線,設(shè)軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.

 

【答案】

(Ⅰ);                

(Ⅱ)點的軌跡方程是,軌跡是一個焦點在軸上的橢圓,除去短軸端點.  

【解析】(I)先討論直線不存在時,是否符合題意.

然后再設(shè)直線斜率存在時的方程為,再利用點到直線的距離公式求出圓心到直線的距離,再利用弦長公式,建立關(guān)于k的方程,求解即可.

(II)本小題屬于相關(guān)點求軌跡方程.設(shè)點的坐標為),點坐標為

點坐標是,再根據(jù),得到

然后利用點M在圓上,可得到動點Q的軌跡方程,再通過方程判斷軌跡是什么曲線.

解:(Ⅰ)①當直線垂直于軸時,則此時直線方程為與圓的兩個交點坐標,其距離為. 滿足題意   ………  1分

②若直線不垂直于軸,設(shè)其方程為,即     

設(shè)圓心到此直線的距離為,則,得  …………3分       

,                                    

故所求直線方程為                               

綜上所述,所求直線為   …………7分                  

(Ⅱ)設(shè)點的坐標為),點坐標為

點坐標是                       …………9分

  即,    …………11分          

又∵,∴                     

點的軌跡方程是,               …………13分     

軌跡是一個焦點在軸上的橢圓,除去短軸端點.    …………14分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案