某同學在電腦中打出如下若干個圈:
●○●○○●○○○●○○○○●○○○○○●……
若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2014個圈中的●的個數(shù)是( )
A.60 B.61 C.62 D.63
科目:高中數(shù)學 來源: 題型:
對于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項為2n,則數(shù)列{an}的前n項和Sn=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
若數(shù)列{an}是正項遞減等比數(shù)列,Tn表示其前n項的積,且T8=T12,則當Tn取最大值時,n的值等于( )
A.9 B.10 C.11 D.12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知等差數(shù)列{an}首項為a,公差為b,等比數(shù)列{bn}首項為b,公比為a,其中a、b都是大于1的正整數(shù),且a1<b1,b2<a3,那么a=________;若對于任意的n∈N*,總存在m∈N*,使得bn=am+3成立,則an=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知數(shù)列{an}的前n項和為Sn,點(an+2,Sn+1)在直線y=4x-5上,其中n∈N*.令bn=an+1-2an,且a1=1.
(1)求數(shù)列{bn}的通項公式;
(2)若f(x)=b1x+b2x2+b3x3+…+bnxn,求f ′(1)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=xa的圖象過點(4,2),令an=,n∈N*.記數(shù)列{an}的前n項和為Sn,則S2013=( )
A.-1 B.-1
C.-1 D.+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)y=f(x)的圖象經(jīng)過坐標原點,其導函數(shù)為f ′(x)=6x-2,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}和數(shù)列{bn}滿足等式:an= (n∈N*),求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
若a>0且a≠1,b>0,則“l(fā)ogab>0”是“(a-1)(b-1)>0”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com