直三棱柱ABC-A1B1C1中,AB=A A1,∠CAB=
(Ⅰ)證明:CB1⊥BA1;
(Ⅱ)已知AB=2,BC=,求三棱錐C1-ABA1的體積.

【答案】分析:(I)連接AB1,根據(jù)ABC-A1B1C1是直三棱柱,得到平面ABC⊥平面ABB1A1,結(jié)合AC⊥AB,可得AC⊥平面ABB1A1,從而有AC⊥BA1,再在正方形ABB1A1中得到AB1⊥BA1,最后根據(jù)線面垂直的判定定理,得到BA1⊥平面ACB1,所以CB1⊥BA1;
 (II)在Rt△ABC中,利用勾股定理,得到AC==1,又因為直三棱柱ABC-A1B1C1中,A1C1=AC=1且AC⊥平面ABB1A1,得到A1C1是三棱錐C1-ABA1的高,且它的長度為1.再根據(jù)正方形ABB1A1面積得到△ABA1的面積,最后根據(jù)錐體體積公式,得到三棱錐C1-ABA1的體積為
解答:解:(I)連接AB1
∵ABC-A1B1C1是直三棱柱,
∴平面ABC⊥平面ABB1A1
又∵平面ABC∩平面ABB1A1=AB,AC⊥AB,
∴AC⊥平面ABB1A1,
∵BA1?平面ABB1A1,∴AC⊥BA1,
∵矩形ABB1A1中,AB=AA1,
∴四邊形ABB1A1是正方形,
∴AB1⊥BA1,
又∵AB1、CA是平面ACB1內(nèi)的相交直線,
∴BA1⊥平面ACB1
∵CB1?平面ACB1,∴CB1⊥BA1;
 (II)∵AB=2,BC=,
∴Rt△ABC中,AC==1
∴直三棱柱ABC-A1B1C1中,A1C1=AC=1
又∵AC∥A1C1,AC⊥平面ABB1A1,
∴A1C1是三棱錐C1-ABA1的高.
∵△ABA1的面積等于正方形ABB1A1面積的一半
=AB2=2
三棱錐C1-ABA1的體積為V=××A1C1=
點評:本題根據(jù)底面為直角三角形的直三棱柱,證明線面垂直并且求三棱錐的體積,著重考查了直線與平面垂直的性質(zhì)與判定和錐體體積公式等知識點,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求證:平面AB1C⊥平面B1CB;    
(2)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直線B1C與平面ABC成30°角.
(1)求證:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距離;   
(3)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶八中高三(下)第二次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案