精英家教網 > 高中數學 > 題目詳情

在直角坐標平面內,到點(1,1)和直線x+2y=3距離相等的點的軌跡是


  1. A.
    直線
  2. B.
    拋物線
  3. C.
  4. D.
    雙曲線
A
將點(1,1)代入直線方程x+2y=3得1+2×1=3.此點(1,1)在直線上,故動點應是過點(1,1)且與直線x+2y=3垂直的直線,而不是拋物線.注意拋物線定義中的條件.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(選修4-4:坐標系與參數方程)
在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸,單位長度保持一致建立極坐標系,已知點M的極坐標為(4
2
π
4
),曲線C的參數方程為
x=1+
2
cosθ
y=
2
sinθ
(θ為參數).
(1)求直線OM的直角坐標方程;
(2)求點M到曲線C上的點的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點M的極坐標為(4
2
,
π
4
)
,曲線C的參數方程為
x=1+
2
cosα
y=
2
sinα
(α為參數).
(I)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點M的極坐標為(4
2
,
π
4
)
,曲線C的參數方程為
x=1+
2
cosα
y=
2
sinα
(α為參數).求點M到曲線C上的點的距離的最小值
5-
2
5-
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數方程
在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4
2
,
π
4
),曲線C的參數方程為
x=1+
2
cosα
y=
2
sinα
(α為參數).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設實數a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)在直角坐標平面內,y軸右側的一動點P到點(
1
2
,0)的距離比它到y(tǒng)軸的距離大
1
2

(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)設Q為曲線C上的一個動點,點B,C在y軸上,若△QBC為圓(x-1)2+y2=1的外切三角形,求△QBC面積的最小值.

查看答案和解析>>

同步練習冊答案