【題目】函數(shù)f(x)= + 的定義域?yàn)椋?/span> )
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}
【答案】A
【解析】解:由 ,解得x≥﹣3且x≠﹣2.
∴函數(shù)f(x)= + 的定義域?yàn)閧x|x≥﹣3且x≠﹣2}.
故選:A.
【考點(diǎn)精析】掌握函數(shù)的定義域及其求法是解答本題的根本,需要知道求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn),G分別為A1B1 , BB1 , B1C1的中點(diǎn),則AC1與D1E所成角的余弦值為 , AC1與平面EFG所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中, 平面, , , ,點(diǎn)在棱上,且.建立如圖所示的空間直角坐標(biāo)系.
(1)當(dāng)時(shí),求異面直線與的夾角的余弦值;
(2)若二面角的平面角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(Ⅰ)求證:SB=SD;
(Ⅱ)若∠BCD=120°,M為棱SA的中點(diǎn),求證:DM∥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=x(2+x).
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并寫出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式 <0的解集為( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:x2+y2﹣3x﹣3y+3=0,圓C2:x2+y2﹣2x﹣2y=0.
(1)求兩圓的公共弦所在的直線方程及公共弦長(zhǎng).
(2)求過(guò)兩圓交點(diǎn)且面積最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且),為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;
(Ⅱ)若函數(shù)只有一個(gè)零點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l交橢圓4x2+5y2=80于M、N兩點(diǎn),橢圓的上頂點(diǎn)為B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是( )
A.5x+6y﹣28=0
B.5x﹣6y﹣28=0
C.6x+5y﹣28=0
D.6x﹣5y﹣28=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com