已知函數(shù)y=sin2x+2sinxcosx+3cos2x,x∈R.
(1)求該函數(shù)的單調(diào)增區(qū)間;
(2)求該函數(shù)的最大值及對(duì)應(yīng)的x的值;
(3)求該函數(shù)的對(duì)稱軸方程與對(duì)稱中心坐標(biāo).

解:y=sin2x+2sinxcosx+3cos2x=
=sin2x+cos2x+2=.(5分)
(1)由,得
所以函數(shù)的單調(diào)增區(qū)間為(8分)
(2)令,得,
所以當(dāng)時(shí),.(12分)
(3)由,得,
所以該函數(shù)的對(duì)稱軸方程為
,得
所以,該函數(shù)的對(duì)稱中心為:.(16分)
分析:(1)利用二倍角公式,降次升角,以及兩角和的正弦函數(shù),化簡(jiǎn)函數(shù)y=sin2x+2sinxcosx+3cos2x為y=,利用正弦函數(shù)的單調(diào)增區(qū)間,求該函數(shù)的單調(diào)增區(qū)間;
(2)利用正弦函數(shù)的最值以及取得最值時(shí)的x值,直接求該函數(shù)的最大值及對(duì)應(yīng)的x的值;
(3)利用正弦函數(shù)的對(duì)稱軸和對(duì)稱中心,直接求該函數(shù)的對(duì)稱軸方程與對(duì)稱中心坐標(biāo).
點(diǎn)評(píng):本題是基礎(chǔ)題,考查正弦函數(shù)的單調(diào)性,對(duì)稱軸方程,對(duì)稱中心,最值,利用基本函數(shù)的基本性質(zhì),是集合本題的關(guān)鍵,基本知識(shí)掌握的好壞,直接影響解題效果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=loga(x-1)+3(a>0且a≠1)的圖象恒過(guò)定點(diǎn)P,若角α的終邊經(jīng)過(guò)點(diǎn)P,則sin2α-sin2α的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=loga(x-1)+3(a>0且a≠1)的圖象恒過(guò)點(diǎn)P,若角α的終邊經(jīng)過(guò)點(diǎn)P,則cos2α-sin2α的值等于
-
8
13
-
8
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),f(x)圖象上每個(gè)點(diǎn)的縱坐標(biāo)保持不變,將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,然后再將整個(gè)圖象沿x軸向左平移個(gè)單位,得到的曲線與y=sinx圖象相同,則y=f(x)的函數(shù)表達(dá)式為(    )

A.y=sin(-)                     B.y=sin2(x+

C.y=sin(+)                     D.y=sin(2x-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)y=loga(x-1)+3(a>0且a≠1)的圖象恒過(guò)定點(diǎn)P,若角α的終邊經(jīng)過(guò)點(diǎn)P,則sin2α-sin2α的值等于( 。
A.
3
13
B.
5
13
C.-
3
13
D.-
5
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省衡水市冀州市高三(上)期中數(shù)學(xué)試卷A(理科)(解析版) 題型:選擇題

已知函數(shù)y=loga(x-1)+3(a>0且a≠1)的圖象恒過(guò)定點(diǎn)P,若角α的終邊經(jīng)過(guò)點(diǎn)P,則sin2α-sin2α的值等于( )
A.
B.
C.-
D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案