數(shù)列{an}滿足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
3
5
,則a2014=( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用a1=
3
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,得到規(guī)律,即可得出結(jié)論.
解答: 解:∵a1=
3
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,
∴a2=
1
5
,a3=
2
5
,a4=
4
5
,a5=
3
5
,a6=
1
5
,
∴數(shù)列{an}的周期為4,
∴a2014=
1
5
,
故選:A.
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知AD、BE分別是△ABC的邊BC,AC上的中線,且
AD
=
a
,
BE
=
b
,則
BC
=( 。
A、
1
3
a
+
2
3
b
B、
2
3
a
+
1
3
b
C、
2
3
a
+
4
3
b
D、
4
3
a
+
2
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,|
b
|≠0,且函數(shù)f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x在R上有極值,則
a
b
的夾角范圍為( 。
A、[0,
π
6
B、(
π
3
,π]
C、(
π
3
,
π
2
]
D、(
π
6
,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由數(shù)字2,3,4,5,6所組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中5與6相鄰的奇數(shù)有( 。
A、14個(gè)B、15個(gè)
C、16個(gè)D、17個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序語(yǔ)句過(guò)程中,循環(huán)體執(zhí)行的次數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),P是雙曲線C上一點(diǎn),且|PF1|+|PF2|=6a,△PF1F2的最小內(nèi)角為30°,則雙曲線C的離心率e為( 。
A、
2
B、2
2
C、
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.曲線C1,曲線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρsin(θ+
π
4
)=2
2

(1)求曲線C1與C2的直角坐標(biāo)方程,并分別指出是什么曲線?
(2)求曲線C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD是矩形,AB=1,BC=
3
,將△ABC沿著對(duì)角線AC折起來(lái)得到△AB1C且頂點(diǎn)B1在平面ACD上射影O恰落在邊AD上,如圖所示.
(1)求證:平面AB1C⊥平面B1CD;             
(2)求三棱錐B1-ABC的體積VB1-ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N*,有2Sn=2an2+an-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
4Sn
n+3
•2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案