(2013•廣西一模)若將函數(shù)y=sin(wx+
π
4
)(w>0)
的圖象向右平移
π
4
個(gè)單位長(zhǎng)度后,與函數(shù)y=sin(wx+
π
3
)
的圖象重合,則w的最小值為( 。
分析:變換后所得圖象對(duì)應(yīng)的函數(shù)解析式為 y=sin[w(x-
π
4
)+
π
4
]
,由題意可得
π
3
=
π
4
-
4
+2kπ,k∈z,由此求得w的最小值.
解答:解:將函數(shù)y=sin(wx+
π
4
)(w>0)
的圖象向右平移
π
4
個(gè)單位長(zhǎng)度后,所得圖象對(duì)應(yīng)的函數(shù)解析式為 y=sin[w(x-
π
4
)+
π
4
]

由題意可得
π
3
=
π
4
-
4
+2kπ,k∈z,解得 w=
24k-1
3
,則w的最小值為
23
3

故選D.
點(diǎn)評(píng):本題主要考查函數(shù) y=Asin(ωx+∅)的圖象變換規(guī)律,由 y=Asin(ωx+∅)的部分圖象求函數(shù)解析式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣西一模)已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)于任意x∈R,都有f(x+6)=f(x)+f(3)成立,當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有
f(x1)-f(x2)x1-x2
>0
.給出下列命題:
①f(3)=0;
②直線(xiàn)x=-6是函數(shù)y=f(x)的圖象的一條對(duì)稱(chēng)軸;
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);
④函數(shù)y=f(x)在[-9,9]上有四個(gè)零點(diǎn).
其中所有正確命題的序號(hào)為
①②④
①②④
(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣西一模)若集合M={x|-2<x<3},N={y|y=x2+1,x∈R},則集合M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣西一模)設(shè)向量
a
、
b
滿(mǎn)足:|
a
|=1,|
b
|=2,
a
•(
a
-
b
)=0,則
a
b
的夾角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣西一模)已知直線(xiàn)l:xtanα-y-3tanβ=0的斜率為2,在y軸上的截距為1,則tan(a+β)=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案