已知點M(1+cos2x,1),N(1,
3
sin2x+a)(x∈R,a∈R,a是常數(shù))
,設y=
OM
ON
(O為坐標 原點)
(1)求y關于x的函數(shù)關系式y(tǒng)=f(x),并求f(x)的最小正周期;
(2)若x∈[0,
π
2
]時,f(x)的最大值為4,求a的值,并求f(x)在[0,
π
2
]
上的最小值.
(1)依題意得:
OM
=(1+cos2x,1),
ON
=(1,
3
sin2x+a)

y=1 + cos2x + a
3
sin2x+
 a=2sin(2x+
π
6
)+ 1 + a
,
∴f(x)的最小正周期為π.
(2)若x∈[0,
π
2
],則(2x+
π
6
)∈[
π
6
6
]
,∴-
1
2
≤sin(2x+
π
6
)≤1

故 ymax =2+1+a=4,∴a=1,ymin =-1+1+a=a=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點M(0,1)、A(1,1)、B(0,2),且
MP
=cosθ•
MA
+sinθ•
MB
(θ∈R)

(I)求點P的軌跡方程;
(II)求過Q(1,3)與(1)中軌跡相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義非零向量
OM
=(a,b)
的“相伴函數(shù)”為f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
稱為函數(shù)f(x)=asinx+bcosx的“相伴向量”(其中O為坐標原點).記平面內(nèi)所有向量的“相伴函數(shù)”構成的集合為S.
(1)設h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求證:h(x)∈S;
(2)求(1)中函數(shù)h(x)的“相伴向量”模的取值范圍;
(3)已知點M(a,b)(b≠0)滿足:(a-
3
)2+(b-1)2=1
上一點,向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當點M運動時,求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(0,1)、A(1,1)、B(0,2),且
MP
=cosθ
MA
+sinθ
MB
(θ∈[0,π]),則點P的軌跡方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:(x+cosθ)2+(y-sinθ)2=1,

直線l:y=kx,下面四個命題:

A.對任意實數(shù)k與θ,直線l和圓M相切;

B.對任意實數(shù)k與θ,直線l和圓M有公共點;

C.對任意實數(shù)θ,必存在實數(shù)k,使得直線l與和圓M相切;

D.對任意實數(shù)k,必存在實數(shù)θ,使得直線l與和圓M相切

其中真命題的代號是___________(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省廣州市仲元中學高三數(shù)學專題訓練:直線和圓的方程(解析版) 題型:選擇題

已知點M(0,1)、A(1,1)、B(0,2),且=cosθ+sinθ(θ∈[0,π]),則點P的軌跡方程是( )
A.x2+y2=1(x≥0)
B.x2+y2=1(y≥0)
C.x2+(y-1)2=1(y≤1)
D.x2+(y-1)2=1(y≥1)

查看答案和解析>>

同步練習冊答案