解二元一次方程組:
n-3r=0
2r
C
r
n
=60
考點(diǎn):組合及組合數(shù)公式
專題:排列組合
分析:由組合數(shù)的特點(diǎn),驗(yàn)證可得只有當(dāng)r=2,n=6時(shí)符合題意.
解答: 解:由題意可知n=3r,r為正整數(shù),
當(dāng)r=1時(shí),可得n=3,2r
C
r
n
=6,不合題意;
當(dāng)r=2時(shí),可得n=6,2r
C
r
n
=60,符合題意;
當(dāng)r≥3時(shí),可推出
C
r
n
不是整數(shù),不合題意;
綜上可得
r=2
n=6
點(diǎn)評:本題考查組合數(shù)公式,涉及整數(shù)的特點(diǎn)的應(yīng)用,驗(yàn)證是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
為向量,若
a
+
b
a
的夾角為
π
3
,
a
+
b
b
的夾角為
π
4
,則
|
a
|
|
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則以下判斷正確的是(  )
A、f(2013)>e2013f(0)
B、f(2013)<e2013f(0)
C、f(2013)=e2013f(0)
D、f(2013)與e2013f(0)大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ax(a∈R),g(x)=exlnx(e為自然對數(shù)的底數(shù)).
(Ⅰ)設(shè)曲線y=f(x)在x=1處的切線為l,點(diǎn)(1,0)到直線l的距離為
2
2
,求a的值;
(Ⅱ)若對于任意實(shí)數(shù)x≥0,f(x)>0恒成立,試確定實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=-1時(shí),函數(shù)M(x)=g(x)-f(x)在[1,e]上是否存在極值?若存在,求出極值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C為△ABC的三個(gè)內(nèi)角,其對邊分別為a、b、c,若
m
=(cosB,sinB)
,
n
=(cosC,-sinC)
,且
m
n
=
1
2

(Ⅰ)求A;
(Ⅱ)若a=2
3
, b+c=4
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)p、q(p>1且q>1)使a1、ap、aq成等比數(shù)列?若存在,求出所有這樣的等比數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
2
2
,A1,A2分別是橢圓C的左、右兩個(gè)頂點(diǎn),點(diǎn)F是橢圓C的右焦點(diǎn).點(diǎn)D是x軸上位于A2右側(cè)的一點(diǎn),且滿足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求橢圓C的方程以及點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D作x軸的垂線n,再作直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn)P,直線l交直線n于點(diǎn)Q.求證:以線段PQ為直徑的圓恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)項(xiàng)點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是9和1
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上一點(diǎn)P到兩焦點(diǎn)的距離之積為m,求當(dāng)m取最大值時(shí),P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足條件
x-y≥0
x+y-6≥0
x≤5
,則z=2x+y的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案