已知α是第二象限角,則cosα的范圍
 
考點(diǎn):任意角的三角函數(shù)的定義,三角函數(shù)值的符號(hào)
專題:三角函數(shù)的求值
分析:直接利用任意角的三角函數(shù)的定義,判斷三角函數(shù)的值的符號(hào)即可.
解答: 解:α是第二象限角,則cosα=
x
r
∈(-1,0),
cosα的范圍:(-1,0).
故答案為:(-1,0)
點(diǎn)評(píng):本題考查任意角的三角函數(shù)的定義,三角函數(shù)的范圍的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的通徑為BC,準(zhǔn)線l與對(duì)稱軸交于A,且F為拋物線的焦點(diǎn)
(1)求證:△ABC為等腰直角三角形;
(2)若p=
2
+1,求△ABC內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[m]表示不超過實(shí)數(shù)m的最大整數(shù),則在直角坐標(biāo)平面xOy上,則滿足[x]2+[y]2=50的點(diǎn)P(x,y)所成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+x(a,b∈R,ab≠0)的圖象如圖所示(x1,x2為兩個(gè)極值點(diǎn)),且|x1|>|x2|則有( 。
A、a>0,b>0
B、a<0,b<0
C、a<0,b>0
D、a>0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,過對(duì)角線BD1的平面分別交AA1,CC1于點(diǎn)E,F(xiàn).
(1)證明:截面BED1F把正方體分成體積相等的兩部分;
(2)若截面BED1F與底面ABCD所成二面角的余弦值為
6
3
,求直線BD與平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n、α、β∈R,m<n,α<β,若α、β是函數(shù)f(x)=2(x-m)(x-n)-7的零點(diǎn),則m、n、α、β四個(gè)數(shù)按從小到大的順序是
 
(用符號(hào)“<”連接起來).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,(x∈R)
(1)求f(x)在點(diǎn)(1,e)處的切線方程;
(2)證明:曲線y=f(x)與曲線y=
1
2
x2+x+1有唯一公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosφ=-
3
3
,180°<φ<270°,求sin2φ,cos2φ,tan2φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直線PB上,
(1)求證:BC⊥PB;
(2)若AD=
3
,AB=BC=2,Q為AC的中點(diǎn),求二面角Q-PB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案