已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,則實(shí)數(shù)a的值為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:由題意先求直線x+2y=0的斜率為-
1
2
;再由垂直可得在x=1處的切線的斜率為2;求導(dǎo)并令導(dǎo)數(shù)為2即可.
解答: 解:直線x+2y=0的斜率為-
1
2
;
故在x=1處的切線的斜率為2;
f′(x)=1+
a
x

故f′(1)=1+a=2;
解得,a=1.
故答案為:1.
點(diǎn)評(píng):本題考查了直線與直線的位置關(guān)系應(yīng)用,導(dǎo)數(shù)的幾何意義的應(yīng)用及導(dǎo)數(shù)的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)-x<0的解集為(x1,x2)其中x1,x2滿足0<x1<x2
1
a

(1)當(dāng)x∈(x1,x2)時(shí),求證x1<f(x)<x;
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,求證:x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知MN=4,求平面內(nèi)滿足MP=
2
NP的P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=(a2-2a)+(a2-a-2)2,對(duì)應(yīng)點(diǎn)在虛軸上,則復(fù)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:某游樂園的摩天輪最高點(diǎn)距離地面108米,直徑是98米,勻速旋轉(zhuǎn)一圈需要18分鐘,如果某人從摩天輪的最低處登上摩天輪并開始計(jì)時(shí).
(1)當(dāng)此人第四次距離地面
69
2
米時(shí)用了多少分鐘?
(2)當(dāng)此人距離地面不低于59+
49
2
3
米時(shí)可以看到樂園的全貌,求摩天輪旋轉(zhuǎn)一圈中有多少分鐘可以看到樂園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)是30元/臺(tái)的商品,在市場(chǎng)銷售中發(fā)現(xiàn)此商品的銷售單價(jià)x(x取整數(shù))元與日銷售量y件之間有如下關(guān)系:
銷售單價(jià)x(元)35404550
日銷售量y(件)56412811
(1)畫出散點(diǎn)圖,并判斷y與x是否具有線性相關(guān)關(guān)系?
(2)求日銷售量y對(duì)銷售單價(jià)x的線性回歸方程;
(3)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)為P元,根據(jù)(1)寫出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測(cè)當(dāng)銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
1
2-an
(n∈N*),且a1=0,
(Ⅰ)計(jì)算a2、a3、a4,并推測(cè)an的表達(dá)式;
(Ⅱ)請(qǐng)用數(shù)學(xué)歸納法證明你在(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知當(dāng)a≤1時(shí),集合{x|a≤x≤2-a}中有且只有3個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=|ax-1|和y=(a-1)x沒有交點(diǎn),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案