給出下列四個(gè)命題,其中正確命題的序號(hào)是
 

①函數(shù)y=sin(2x+
π
6
)
的圖象可由函數(shù)y=sin2x的圖象向左平移
π
6
單位得到;]
②若f(x0)為f(x)的極值,則f′(x0)=0;
③△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知A=60°,a=7,則b+c不可能等于15;
④在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=
x
2
的圖象有三個(gè)公共點(diǎn).
分析:由函數(shù)圖象的平移變換法則,我們可以判斷①的真假;由函數(shù)極值點(diǎn)與導(dǎo)數(shù)的關(guān)系,可以判斷②的真假;根據(jù)余弦定理,可以判斷③的真假;根據(jù)正弦型函數(shù)的圖象和性質(zhì)可以判斷④的真假,進(jìn)而得到答案.
解答:解:函數(shù)y=sin(2x+
π
6
)
的圖象可由函數(shù)y=sin2x的圖象向左平移
π
12
單位得到,故①錯(cuò)誤;
若f(x)在x0處不可導(dǎo),則f(x0)為f(x)的極值,則f′(x0)無意義,故②錯(cuò)誤;
假設(shè)b+c=15,則b=15-c,由余弦定理a2=b2+c2-2bccosA得:49=(15-c)2+c2-(15-c)c,即3c2-35c+176=0,因?yàn)椤?1225-2112=-887<0,所以此方程無解,
故假設(shè)錯(cuò)誤,則b+c不可能等于15,故③△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知A=60°,a=7,則b+c不可能等于15,正確;
在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=
x
2
的圖象有三個(gè)公共點(diǎn),故④正確.
故答案為:③④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)圖象的平移變換,函數(shù)的圖象,函數(shù)在某點(diǎn)取極值的條件,解三角形,熟練掌握這些基礎(chǔ)的知識(shí)點(diǎn),準(zhǔn)確的分析題目中每一個(gè)命題的真假是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[-2,2]上的函數(shù)y=f(x)和y=g(x),其圖象如圖所示:給出下列四個(gè)命題:
①方程f[g(x)]=0有且僅有6個(gè)根    ②方程g[f(x)]=0有且僅有3個(gè)根
③方程f[f(x)]=0有且僅有5個(gè)根    ④方程g[g(x)]=0有且僅有4個(gè)根
其中正確命題的序號(hào)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若實(shí)數(shù)λ,μ滿足a+b=λc,ab=μc2,則稱數(shù)對(duì)(λ,μ)為△ABC的“Hold對(duì)”,現(xiàn)給出下列四個(gè)命題:
①若△ABC的“Hold對(duì)”為(2,1),則△ABC為正三角形;
②若△ABC的“Hold對(duì)”為(2,
8
9
)
,則△ABC為銳角三角形;
③若△ABC的“Hold對(duì)”為(
7
6
,
1
3
)
,則△ABC為鈍角三角形;
④若△ABC是以C為直角頂點(diǎn)的直角三角形,則以“Hold對(duì)”(λ,μ)為坐標(biāo)的點(diǎn)構(gòu)成的圖形是矩形,其面積為
2
-1
2

其中正確的命題是
①③
①③
(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題
①命題“?x∈R,cosx>0”的否定是“?x0∈R,cosx0≤0”
②若0<a<1,則方程x2+ax-3=0只有一個(gè)實(shí)數(shù)根;
③對(duì)于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f′(x)>0,則當(dāng)x<0時(shí),f′(x)<0;
④一個(gè)矩形的面積為S,周長為l,則有序?qū)崝?shù)對(duì)(6,8)可作為(S,l)取得的一組實(shí)數(shù)對(duì),其正確命題的序號(hào)是
①③
①③
.(填所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)和y=g(x)的定義域均為{x|-2≤x≤2},其圖象如圖所示:

給出下列四個(gè)命題:
①函數(shù)y=f[g(x)]有且僅有6個(gè)零點(diǎn);  
②函數(shù)y=g[f(x)]有且僅有3個(gè)零點(diǎn);
③函數(shù)y=f[f(x)]有且僅有5個(gè)零點(diǎn);  
④函數(shù)y=g[f(x)]有且僅有4個(gè)零點(diǎn),其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省文登市高三上學(xué)期期中統(tǒng)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列四個(gè)命題,其錯(cuò)誤的是(     )

①已知是等比數(shù)列的公比,則“數(shù)列是遞增數(shù)列”是“”的既不充分也不必要條件;

②若定義在上的函數(shù)是奇函數(shù),則對(duì)定義域內(nèi)的任意必有;

③若存在正常數(shù)滿足,則的一個(gè)正周期為

④函數(shù)圖像關(guān)于對(duì)稱.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

同步練習(xí)冊答案