【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學生在寒假結束之后無法返校,教育部就此提出了線上教學和遠程教學,停課不停學的要求也得到了家長們的贊同.各地學校開展各式各樣的線上教學,某地學校為了加強學生愛國教育,擬開設國學課,為了了解學生喜歡國學是否與性別有關,該學校對100名學生進行了問卷調查,得到如下列聯(lián)表:
喜歡國學 | 不喜歡國學 | 合計 | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計 | 100 |
(1)請將上述列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜歡國學與性別有關系?
(2)針對問卷調查的100名學生,學校決定從喜歡國學的人中按分層抽樣的方法隨機抽取6人成立國學宣傳組,并在這6人中任選2人作為宣傳組的組長,設這兩人中女生人數(shù)為,求的分布列和數(shù)學期望.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
【答案】(1)列聯(lián)表見解析;能在犯錯誤的概率不超過0.001的前提下認為喜歡國學與性別有關系.(2)分布列見解析;
【解析】
(1)根據(jù)總數(shù)為100,結合已知數(shù)據(jù)即可補充完整列聯(lián)表;根據(jù)公式,求得的觀測值,結合參考數(shù)據(jù),即可容易判斷;
(2)求得分層抽樣的抽樣比,計算出人中男生和女生人數(shù),利用概率計算公式即可求得分布列,結合分布列求得.
(1)補充完整的列聯(lián)表如下:
喜歡國學 | 不喜歡國學 | 合計 | |
男生 | 20 | 30 | 50 |
女生 | 40 | 10 | 50 |
合計 | 60 | 40 | 100 |
計算得,
所以能在犯錯誤的概率不超過0.001的前提下認為喜歡國學與性別有關系.
(2)喜歡國學的共60人,按分層抽樣抽取6人,則每人被抽到的概率均為,
從而需抽取男生2人,女生4人,
故的所有可能取值為0,1,2.
,,,
故的分布列為:
0 | 1 | 2 | |
數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=3x2-2x,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,Tn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)試判斷函數(shù)的單調性;
(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,是函數(shù)的導函數(shù).
(1)若,求證:對任意,;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以任意方式把空間染成五種顏色(每點屬于一色,每色的點都有).
(1)證明:存在一個平面,至少含有四種不同顏色的點;
(2)是否一定存在五色平面?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根據(jù)上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;
(2)現(xiàn)從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取5人.若從這5人中隨機選取3人到火車站迎接新生,求選取的3人中恰好有1名女生的概率.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是雙曲線E: 的左、右焦點,P是雙曲線上一點, 到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當時, 的面積為,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應國家精準扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應的管理時間的關系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調查了某村300名村民參與管理的意愿,得到的部分數(shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關?
(2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關性?
(3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com