已知A、B是橢圓
x2
16
+
y2
9
=1的兩個(gè)頂點(diǎn),C、D是橢圓上兩點(diǎn),且分別在AB兩側(cè),則四邊形ABCD面積最大值是
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線中的最值與范圍問題
分析:四邊形ABCD面積=S△ABD+S△ABC,AC是固定的直線,可判斷兩條平行直線與AB平行時(shí),切點(diǎn)為C,D,此時(shí)h1,h2最大,面積最大時(shí),利用導(dǎo)數(shù)求出D(2
2
,
3
2
2

再利用對(duì)稱性得出C(-2
2
-
3
2
2
),|AC|=5,最后利用點(diǎn)到直線的距離,求出即可.
解答: 解:∵A、B是橢圓
x2
16
+
y2
9
=1的兩個(gè)頂點(diǎn),
∴A(4,0),B(0,3),
∴直線AB的方程為:3x-4y-12=0,
當(dāng)如圖兩條平行直線與AB平行時(shí),切點(diǎn)為C,D,
此時(shí)四邊形ABCD面積最大值:S=
1
2
×
AC(h1+h2),kAC=-
3
4

y=3
1-
x2
16

y′=-
3
16
x
1-
x2
16
=-
3
4

x=2
2
,y=
3
2
2
,D(2
2
3
2
2

根據(jù)對(duì)稱性可知:C(-2
2
,-
3
2
2
),|AC|=5
h1=
12(
2
-1)
5
,h2=
12(
2
+1)
5
,
S=
1
2
×
AC(h1+h2)=
5
2
×
12(
2
-1)
5
×
12(
2
+1)
5
=
72
5

點(diǎn)評(píng):本題考查了橢圓的幾何性質(zhì),直線與橢圓的位置故關(guān)系,利用數(shù)形結(jié)合的思想判斷出最值的位置,再利用導(dǎo)數(shù)求解,即可得需要的點(diǎn),用公式求解即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,若復(fù)數(shù)Z=a+bi(a,b∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限,則復(fù)數(shù)Z•i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)A(-1,0),B(3,0),C(0,
3
)

(Ⅰ)若
BM
=2 
MC
,且
AM
=x•
AB
+y•
AC
,求x,y的值;
(Ⅱ)若點(diǎn)P(x,y)為直線y=
3
x-1上的一個(gè)動(dòng)點(diǎn),求證∠APC恒為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),兩直角邊分別為1和8,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+1過定點(diǎn)A,動(dòng)點(diǎn)M(x,y)滿足|
MA
|=|y+1|,動(dòng)點(diǎn)M的軌跡為C.
(1)求C的方程;
(2)直線l與C交于P、Q兩點(diǎn),以P、Q為切點(diǎn)分別作C的切線,兩條切線交于點(diǎn)B.
①求證:AB⊥PQ;
②若直線AB與C交于R、S兩點(diǎn),求四邊形PRQS面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象,并寫出它的定義域、值域、單調(diào)區(qū)間、最大最小值.
(1)y=2|x|-1;
(2)y=|2x-1|;
(3)y=x2-4|x|+3;
(4)y=|x2-4x+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(2m+1) 
1
2
>(m2+m-1) 
1
2
,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x=(a1,a2,a3,a4,a5),ai=0,1,i=1,2,3,4,5}.若a,b∈M,定義其“距離”d(a,b)=
5
i=1
|ai-bi|;給出以下命題:
(1)M中所有元素的個(gè)數(shù)為5;
(2)若
5
i=1
ai2=0,b1b2b3b4b5=1,則d(a,b)=5;
(3)若a,b,c∈M,則d(a,b)+d(b,c)≥d(c,a);
(4)設(shè)W⊆M且W中任意兩個(gè)元素之間的距離大于2,則|W|的最大值為4(|W|表示集合W的元素的個(gè)數(shù))
以下命題中正確命題的序號(hào)是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2sin2x+2(x∈R).當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案