設(shè)x1,x2是方程x2+px+4=0的兩個不相等的實根,則(    )

A.|x1|>2且|x2|>2                         B.|x1+x2|>4

C.|x1+x2|<4                                  D.|x1|=4且|x2|=1

B

解析:∵Δ=p2-16>0|p|>4,

∴|x1+x2|=|p|>4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
tx
(t>0)
和點P(1,0),過點P作曲線y=f(x)的兩條切線PM,PN,切點分別為M(x1,y1),N(x2,y2).
(1)求證:x1,x2是關(guān)于x的方程x2+2tx-t=0的兩根;
(2)設(shè)|MN|=g(t),求函數(shù)g(t);
(3)在(2)的條件下,若在區(qū)間[2,16]內(nèi)總存在m+1個實數(shù)a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:x1,x2是方程x2-ax-2=0的兩個實根,不等式|m2-5m-3|≥|x1-x2|對任意實數(shù)a∈[-1,1]恒成立,命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的值域為全體實數(shù),若P且Q為真,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求證:

(1)方程f(x)=0有實根;

(2)-2<<-1;

(3)設(shè)x1,x2是方程f(x)=0的兩個實根,則≤|x1-x2|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求證

(1)方程f(x)=0有實根;

(2)-2<<-1;

(3)設(shè)x1,x2是方程f(x)=0的兩個實根,則≤|x1-x2|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)·f(1)>0.求證:

(Ⅰ)方程f(x)=0有實根;

(Ⅱ)-2<<-1;

(Ⅲ)設(shè)x1,x2是方程f(x)=0的兩個實根,則≤|x1-x2|<.

查看答案和解析>>

同步練習(xí)冊答案