【題目】已知函數(shù)

Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

Ⅱ)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求的值.

【答案】1;(2

【解析】試題分析:(1)根據(jù)誘導(dǎo)公式、二倍角的正弦余弦公式以及輔助角公式將函數(shù)化為的形式,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)增區(qū)間;(2)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位可得到的解析式,從而得求的值.

試題解析:(1

所以的單調(diào)遞增區(qū)間是

2)由(1)知的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到的圖象,再把得到的圖象向左平移個(gè)單位,得到 的圖象

,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足: ,則稱直線隔離直線.已知為自然對(duì)數(shù)的底數(shù))

1)求的極值;

2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p: ,q:x2﹣2x+1﹣m2≤0(m>0).若¬p是¬q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】蘭州一中在世界讀書日期間開(kāi)展了書香校園系列讀書教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為讀書迷,低于60分鐘的學(xué)生稱為非讀書迷

非讀書迷

讀書迷

合計(jì)

15

45

(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?

2利用分層抽樣從這100名學(xué)生的讀書迷”中抽取8名進(jìn)行集訓(xùn),從中選派2名參加蘭州市讀書知識(shí)比賽,求至少有一名男生參加比賽的概率。

附:

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3+…+an(x﹣1)n , (其中n∈N*
(1)求a0及Sn=a1+2a2+3a3+…+nan;
(2)試比較Sn與n3的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)l,m是兩條不同直線,α是一個(gè)平面,則下列四個(gè)命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l∥α,m∥α,則l∥m
C.若l∥α,mα,則l∥m
D.若l⊥α,l∥m,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 過(guò)橢圓 ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn),且線段長(zhǎng)度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)點(diǎn)作圓的一條切線交橢圓, 兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)若f(x)在( ,+∞)上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區(qū)間的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案