以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)的直角坐標(biāo)為,點(diǎn)的極坐標(biāo)為,若直線過點(diǎn),且傾斜角為,圓為 圓心、為半徑。
(I) 寫出直線的參數(shù)方程和圓的極坐標(biāo)方程;
(Ⅱ)試判定直線和圓的位置關(guān)系。
(Ⅰ)直線的參數(shù)方程是,(為參數(shù))
的極坐標(biāo)方程是。                         ………………5分
(Ⅱ)圓心的直角坐標(biāo)是,直線的普通方程是,
圓心到直線的距離,所以直線和圓相離
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是△ABC所在平面外一點(diǎn),D是PC的中點(diǎn),若
BD
=x
AB
+y
AC
+z
AP
,則x+y+z=( 。
A.-1B.0C.
1
2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是直線l上的不同三點(diǎn),O是l外一點(diǎn),向量
OA
,
OB
OC
滿足
OA
=(
3
2
x2+1)
OB
-(lnx-y)
OC
,記y=f(x);
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)本題共有2個小題,第1小題滿分6分,第2小題滿分10分.
  已知兩點(diǎn)、,點(diǎn)是直角坐標(biāo)平面上的動點(diǎn),若將點(diǎn)的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到倍后得到點(diǎn)滿足
(1) 求動點(diǎn)所在曲線的軌跡方程;
(2)(理科)過點(diǎn)作斜率為的直線交曲線兩點(diǎn),且滿足,又點(diǎn)關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn),試問四點(diǎn)是否共圓,若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.
(文科)過點(diǎn)作斜率為的直線交曲線兩點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),試判斷點(diǎn)是否在曲線上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)求一條漸近線方程是,且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程,并求此雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方程的方程,直線
(1)求的取值范圍; (2)若圓與直線交于PQ兩點(diǎn),且以PQ為直徑的圓恰過坐標(biāo)原點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,直線yx與拋物線C交于A,B兩點(diǎn),若P(2,2)為AB的中點(diǎn),則拋物線C的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為橢圓的兩個焦點(diǎn),過的直線交橢圓于A、B兩點(diǎn)若,則=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

到兩坐標(biāo)軸的距離之和等于2的點(diǎn)的軌跡方程是                        (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案