24、已知下表為定義域為R的函數(shù)f(x)=ax3+cx+d若干自變量取值及其對應函數(shù)值,為便于研究,相關函數(shù)值非整數(shù)值時,取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根據(jù)表中數(shù)據(jù)解答下列問題:
(1)函數(shù)y=f(x)在區(qū)間[0.55,0.6]上是否存在零點,寫出判斷并說明理由;
(2)證明:函數(shù)y=f(x)在區(qū)間(-∞,-0.35]單調(diào)遞減.
分析:根據(jù)圖表中f(0)=0求得d=0,進而可判斷出f(-x)=-f(x)函數(shù)為奇函數(shù),結(jié)合f(-0.56)<0可得f(0.56)>0,同理得f(0.59)<0,進而可知f(x)在[0.55,0.6]上必有零點;根據(jù)圖象的趨勢f(-0.35)=-0.22,f(-0.56)=-0.03,f(-0.59)=0.026,f(-0.61)=0.07,可推斷出函數(shù)f(x)在(-∞,-0.35]上單調(diào)遞減;
解答:解:(1)∵f(0)=0∴d=0,∴f(-x)=-f(x),函數(shù)f(x)為奇函數(shù);
     又f(0.56)=-f(-0.56)=0.03>0,f(0.59)=-f(-0.59)=-0.03<0
∴f(x)在[0.55,0.6]上必有零點結(jié)論.
   (2)∵f(-0.35)=-0.22,f(-0.56)=-0.03,f(-0.59)=0.03,f(-0.61)=0.07,
∴f(x)在(-∞,-0.35]上單調(diào)遞減.
點評:本題主要考查了函數(shù)奇偶性的判斷.考查了學生分析推理和解決實際問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知下表為定義域為R的函數(shù)f(x)=ax3+cx+d若干自變量取值及其對應函數(shù)值,為便于研究,相關函數(shù)值非整數(shù)值時,取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根據(jù)表中數(shù)據(jù)解答下列問題:
(1)函數(shù)y=f(x)在區(qū)間[0.55,0.6]上是否存在零點,寫出判斷并說明理由;
(2)證明:函數(shù)y=f(x)在區(qū)間(-∞,-0.35]單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年11月北京市北大附中高中高一(上)課改數(shù)學模塊水平監(jiān)測(必修1)(解析版) 題型:解答題

已知下表為定義域為R的函數(shù)f(x)=ax3+cx+d若干自變量取值及其對應函數(shù)值,為便于研究,相關函數(shù)值非整數(shù)值時,取值精確到0.01.
x3.271.57-0.61-0.590.260.42-0.35-0.564.25
y-101.63-10.040.070.030.210.20-0.22-0.03-226.05
根據(jù)表中數(shù)據(jù)解答下列問題:
(1)函數(shù)y=f(x)在區(qū)間[0.55,0.6]上是否存在零點,寫出判斷并說明理由;
(2)證明:函數(shù)y=f(x)在區(qū)間(-∞,-0.35]單調(diào)遞減.

查看答案和解析>>

同步練習冊答案