在高中“自選模塊”考試中,某考場(chǎng)的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況

(1)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;

(2)設(shè)為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求的分布列和數(shù)學(xué)期望

 

【答案】

 

(1)

(2)期望1

【解析】

解:(1)設(shè)“從第一小組選出的2人均考《矩陣變換和坐標(biāo)系與參數(shù)方程》”為事件A,

     “從第二小組選出的2人均考《矩陣變換和坐標(biāo)系與參數(shù)方程》”為事件B.

      由于事件A、B相互獨(dú)立,且      ......4分

     所以選出的4人均考《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率為

                                          ......6分

(2)可能的取值為0,1,2,3,則

    

 ,......10分

    的分布列為

0

1

2

3

    ∴的數(shù)學(xué)期望       ......12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在“自選模塊”考試中,某試場(chǎng)的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(Ⅱ)設(shè)ξ為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•浙江模擬)在“自選模塊”考試中,某考場(chǎng)的每位同學(xué)都選作了一道數(shù)學(xué)題,第一小組選《不等式選講》的有1人,選《坐標(biāo)系與參數(shù)方程》的有5人;第二小組選《不等式選講》的有2人,選《坐標(biāo)系與參數(shù)方程》的有4人.現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4 人均為選《坐標(biāo)系與參數(shù)方程》的概率;
(2)設(shè)ξ為選出的4個(gè)人中選《不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在“自選模塊”考試中,某試場(chǎng)的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.

   (Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;

   (Ⅱ)設(shè)為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求的分布列和

    數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省高三第二次月考理科數(shù)學(xué)卷 題型:解答題

在高中“自選模塊”考試中,某考場(chǎng)的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況

(1)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;

(2)設(shè)為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求的分布列和數(shù)學(xué)期望

 

查看答案和解析>>

同步練習(xí)冊(cè)答案