(2011•奉賢區(qū)二模)(文)將圖所示的一個(gè)直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個(gè)圖形中的( 。
分析:應(yīng)先得到旋轉(zhuǎn)后得到的幾何體,它是一個(gè)是兩個(gè)圓錐的組合體,找到從正面看所得到的圖形即可得到得到的幾何體的正視圖.
解答:解:繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體是兩個(gè)圓錐的組合體,它的正視圖是兩個(gè)等腰三角形,三角形之間有一條虛線段,故選B.
點(diǎn)評:本題考查了構(gòu)成空間幾何體的基本元素、三視圖的知識(shí),正視圖是從物體的正面看得到的視圖.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文) 如圖都是由邊長為1的正方體疊成的圖形.例如第(1)個(gè)圖形的表面積為6個(gè)平方單位,第(2)個(gè)圖形的表面積為18個(gè)平方單位,第(3)個(gè)圖形的表面積是36個(gè)平方單位.依此規(guī)律,則第n個(gè)圖形的表面積是
3n(n+1)
3n(n+1)
個(gè)平方單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
b
a
上的投影為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)用2π平方米的材料制成一個(gè)有蓋的圓錐形容器,如果在制作過程中材料無損耗,且材料的厚度忽略不計(jì),底面半徑長為x,圓錐母線的長為y
(1)建立y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)圓錐的母線與底面所成的角大小為
π3
,求所制作的圓錐形容器容積多少立方米(精確到0.01m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)若復(fù)數(shù)3+i是實(shí)系數(shù)一元二次方程x2-6x+b=0的一個(gè)根,則b=
10
10

查看答案和解析>>

同步練習(xí)冊答案