已知球O的表面積為12π.
(1)求球O的半徑;
(2)已知正方體ABCD-A1B1C1D1的頂點(diǎn)都在球O的球面上,求這個(gè)球的體積與正方體ABCD-A1B1C1D1的體積之比.
分析:(1)先利用球的表面積計(jì)算公式,求得球的半徑即可;
(2)先求正方體的棱長(zhǎng)為a和球的半徑為R之間的數(shù)量關(guān)系,利用體積公式可求出體積之比.
解答:解:(1)設(shè)球的半徑為R,依題意:
球的表面積s=4πR2=12π,解得R=
3

故球O的半徑為
3

(2)設(shè)正方體的棱長(zhǎng)為a,球的半徑為R(其中R=
3

3
a=2R,∴R=
3
2
a,
∴正方體ABCD-A1B1C1D1的體積與球O的體積之比為
a3
4
3
π R3
=
a3
4
3
π
3
3
8
a3
=
2
3
π

即這個(gè)球的體積與正方體ABCD-A1B1C1D1的體積之比為
3
π
:2.
點(diǎn)評(píng):本題考查了球的表面積計(jì)算公式,考查了正方體和球的體積,也考查了空間想象力,要清楚正方體的體對(duì)角線(xiàn)就是圓的直徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球O的表面積為8π,A,B,C是球面上的三點(diǎn),點(diǎn)M是AB的中點(diǎn),AB=2,BC=1,∠ABC=
π
3
,則二面角M=OC-B的大小為
arctan
6
arctan
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球O的表面積為20π,SC是球O的直徑,A、B兩點(diǎn)在球面上,且AB=BC=2,AC=2
3
,則三棱錐S-AOB的高為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南師大附中高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知球O的表面積為12π.
(1)求球O的半徑;
(2)已知正方體ABCD-A1B1C1D1的頂點(diǎn)都在球O的球面上,求這個(gè)球的體積與正方體ABCD-A1B1C1D1的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省洛陽(yáng)市宜陽(yáng)實(shí)驗(yàn)高中高考數(shù)學(xué)預(yù)測(cè)試卷2(理科)(解析版) 題型:解答題

已知球O的表面積為8π,A,B,C是球面上的三點(diǎn),點(diǎn)M是AB的中點(diǎn),AB=2,BC=1,∠ABC=,則二面角M=OC-B的大小為   

查看答案和解析>>

同步練習(xí)冊(cè)答案