根據(jù)所給條件,判斷△ABC的形狀.
(1)acosA=bcosB;
(2)
a
cosA
=
b
cosB
=
c
cosC
(1)△ABC中,∵acosA=bcosB,由正弦定理可得 sinAcosA=sinBcosB,故有 sin2A=sin2B,∴2A=2B,或2A+2B=π,即A=B或A+B=
π
2

若A=B,△ABC為等腰三角形;若A+B=
π
2
,則可得 C=
π
2
,△ABC為直角三角形.
綜上可得,△ABC為等腰三角形或直角三角形.
(2)△ABC中,∵
a
cosA
=
b
cosB
=
c
cosC
,則由正弦定理可得
sinA
cosA
=
sinB
cosB
=
sinC
coC
,即 tanA=tanB=tanC,
∴A=B=C,故△ABC為等邊三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)所給條件,判斷△ABC的形狀.
(1)acosA=bcosB;
(2)
a
cosA
=
b
cosB
=
c
cosC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)所給條件,判斷△ABC的形狀.

(1)acosA=bcosB;(2)==.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)所給條件,判斷△ABC的形狀.
(1)acosA=bcosB;
(2)
a
cosA
=
b
cosB
=
c
cosC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)所給條件,判斷△ABC的形狀.

(1)acosA=bcosB;

(2)==

查看答案和解析>>

同步練習(xí)冊(cè)答案