已知等差數(shù)列{an}前n項(xiàng)和為Sn,且a3+a8=13,S7=35,則a7=
 
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件,利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,能求出首項(xiàng)和公差,由此能求出a7
解答: 解:∵等差數(shù)列{an}前n項(xiàng)和為Sn,且a3+a8=13,S7=35,
2a1 +9d=13
7a1+21d=35
,解得a1=2,d=1,
∴a7=2+6×1=8.
故答案為:8.
點(diǎn)評:本題考查等差數(shù)列的第7項(xiàng)的求法,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡求值:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
992
)(1-
1
1002
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
x-a2
x-1
≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求下列各式的值:
(1)
3sinα-5cosα
cosα+2sinα

(2)2sin2α-3cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有3名大學(xué)畢業(yè)生到IT人才市場應(yīng)聘,有4個(gè)公司可選擇,若每個(gè)公司最多從3名大學(xué)畢業(yè)生中選一人參加招聘考試,且3名大學(xué)生中至少有1人參加了招聘考試,共有
 
種結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a、b、c為角A、B、C的對邊,a=4,b+c=5,∠C=60°,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+3x+a=0}為空集,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
n→∞
n3+n2+5
2n3+3n2+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=log2x則在區(qū)間(0,5)上隨機(jī)取一個(gè)數(shù)x,f(x)<2的概率為
 

查看答案和解析>>

同步練習(xí)冊答案