12.兩個實習生每人加工一個零件,加工為一等品的概率分別為$\frac{2}{3}$和$\frac{1}{2}$,兩個零件是否加工為一等品相互獨立,則這兩個零件中至少有一個加工為一等品的概率為( 。
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 這兩個零件中至少有一個加工為一等品對立事件是兩個零件都沒有加工為一等品,由此利用對立事件概率公式求解即可.

解答 解:兩個實習生每人加工一個零件,加工為一等品的概率分別為$\frac{2}{3}$和$\frac{1}{2}$,
兩個零件是否加工為一等品相互獨立,
∴這兩個零件中至少有一個加工為一等品的概率為:
p=1-$\frac{2}{3}×\frac{1}{2}$=$\frac{5}{6}$.
故選:B.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意相互獨立事件概率乘法公式、對立事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱椎P-ABC中,D,E,F(xiàn)分別是棱PC、AC、AB的中點,且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)當a=0時,判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在圓的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,則圓的位置滿足(  )
A.截兩坐標軸所得弦的長度相等B.與兩坐標軸都相切
C.與兩坐標軸相離D.上述情況都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關于θ的函數(shù)關系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知隨機變量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,則n=5,p=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.二手車經銷商小王對其所經營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應數(shù)據(jù):
使用年數(shù)246810
售價16139.574.5
(1)若這兩個變量呈線性相關關系,試求y關于x的回歸直線方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價格為ω=0.03x2-1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?
(銷售一輛該型號汽車的利潤=銷售價格-收購價格)
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(1)已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點為圓心,橢圓的短半軸長為半徑的圓與直線$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.求橢圓C的方程;
(2)已知⊙A1:(x+2)2+y2=12和點A2(2,0),求過點A2且與⊙A1相切的動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知實數(shù)x>0,y>0,且滿足x+y=1,則$\frac{2}{x}$+$\frac{x}{y}$的最小值為2+2$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案