如圖,在四邊形ABCD中,BC=m,DC=2m,四個內(nèi)角A、B、C、D之比為3∶7∶4∶10,試求四邊形ABCD的面積.
解:由題意知,設(shè)四個內(nèi)角A,B,C,D的大小依次為3x,7x,4x,10x,則3x+7x+4x+10x=360°.得x=15°,即A=45°,B=105°,C=60°,D=150°,在△BCD中,由余弦定理,得 BD2=BC2+DC2-2BC·DC·cosC=m2+(2m)2-2×m×2m×cos60°=3m2, ∴BD=m. ∴S△BCD=DC·BC·sinC=×m×2m×=m2. 在△BCD中,BD2+BC2=DC2,∴∠DBC=90°.∴∠BDC=30°. 在△BAD中,由正弦定理,得 AB==m. 又∠ABD=105°-90°=15°, ∴S△ABD=AB·BD·sin15°=×m×m×=m2. ∴S四邊形ABCD=S△ABD+S△BCD=m2+m2=m2. |
科目:高中數(shù)學(xué) 來源: 題型:
3 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com