(理)函數(shù)y1=f(x)的定義域D1,它的零點(diǎn)組成的集合是E1,y2=g(x)的定義域D2,它的零點(diǎn)組成的集合是E2,則函數(shù)y=f(x)g(x)零點(diǎn)組成的集合是
 
(答案用E1、E2、D1、D2的集合運(yùn)算來表示)
分析:根據(jù)函數(shù)零點(diǎn)的定義,由y=f(x)g(x)=0,得f(x)=0或g(x)=0,然后根據(jù)集合關(guān)系即可得到結(jié)論.
解答:解:由y=f(x)g(x)=0,
得f(x)=0或g(x)=0,
∵y1=f(x)的定義域D1,y2=g(x)的定義域D2,
∴函數(shù)y=f(x)g(x)的定義域?yàn)镈1∩D2,
∵y1=f(x)的零點(diǎn)組成的集合是E1,y2=f(x)的零點(diǎn)組成的集合是E2
∴y=f(x)g(x)=0的零點(diǎn)為(E1∪E2)∩(D1∩D2),
故答案為:(E1∪E2)∩(D1∩D2
點(diǎn)評:本題主要考查函數(shù)零點(diǎn)的應(yīng)用,以及基本的基本運(yùn)算,注意求函數(shù)的零點(diǎn)前必須要求函數(shù)的定義域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn),…(n∈N*)順次為某直線l上的點(diǎn),點(diǎn)A1(x1,0),A2(x2,0),…,An(xn,0),…順次為x軸上的點(diǎn),其中x1=a(0<a≤1).對于任意的n∈N*,△AnBnAn+1是以Bn為頂點(diǎn)的等腰三角形.

(1)證明xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式.

(2)若l的方程為y=,試問在△AnBnAn+1(n∈N*)中是否存在直角三角形?若存在,求出a的值;若不存在,請說明理由.

(文)已知函數(shù)f(x)=ax3x2+cx+d(a、c、d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.

(1)求a、c、d的值.

(2)若h(x)=x2-bx+,解不等式f′(x)+h(x)<0.

(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請求出實(shí)數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市嘉定區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

(理)已知函數(shù),P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè),其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問是否存在角a,使不等式對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案