【題目】在數(shù)列{an}中,2an=an﹣1+an+1(n≥2),且a2=10,a5=﹣5,求{an}前n項和Sn的最大值為

【答案】30
【解析】解:∵在數(shù)列{an}中,2an=an﹣1+an+1(n≥2),
∴數(shù)列{an}是等差數(shù)列,
設公差為d.∵a2=10,a5=﹣5,
, 解得
∴an=15﹣5(n﹣1)=20﹣5n.
由an≥0,解得n≤4.
∴當n=3或4時,{an}前n項和Sn取得最大值15+10+5,即30,
所以答案是:30.
【考點精析】通過靈活運用等差關系的確定,掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的棱長均為.點是側棱的中點,點、分別是側面,底面的動點,且平面平面.則點的軌跡的長度為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在北京召開的第24屆國際數(shù)學家大會的會標,會標是根據(jù)中國古代數(shù)學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客.我們教材中利用該圖作為一個說法的一個幾何解釋,這個說法正確的是(

A.如果,那么B.如果,那么

C.對任意正實數(shù),有, 當且僅當時等號成立D.對任意正實數(shù),有,當且僅當時等號成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題只理科做,滿分14分)如圖,已知平面,,△是正三角形,,的中點.

1)求證:平面;

2)求證:平面平面;

3)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2(lga2)xlgb,f(1)=2,當x∈Rf(x)≥2x恒成立,求實數(shù)a的值,并求此時f(x)的最小值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(  )

A. 列聯(lián)表中的值為30,的值為35

B. 列聯(lián)表中的值為15,的值為50

C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認為“成績與班級有關系”

D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認為“成績與班級有關系”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=logax(a>0,a≠1),設數(shù)列f(a1),f(a2),f(a3),…,f(an)…是首項為4,公差為2的等差數(shù)列.
(I)設a為常數(shù),求證:{an}成等比數(shù)列;
(II)設bn=anf(an),數(shù)列{bn}前n項和是Sn , 當時,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

同步練習冊答案