(文) 若,則目標(biāo)函數(shù)z=2x+y的最小值為   
【答案】分析:先根據(jù)條件畫(huà)出可行域,設(shè)z=2x+y,再利用幾何意義求最值,將最小值轉(zhuǎn)化為y軸上的截距,只需求出直線z=2x+y,過(guò)可行域內(nèi)的點(diǎn)A(1,2)時(shí)的最小值,從而得到z最小值即可.
解答:解:設(shè)變量x、y滿(mǎn)足約束條件 ,
在坐標(biāo)系中畫(huà)出可行域三角形,A(1,2),(4,2),C(1,5),
則目標(biāo)函數(shù)z=2x+y的最小值為4.
故答案為:4.
點(diǎn)評(píng):借助于平面區(qū)域特性,用幾何方法處理代數(shù)問(wèn)題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2006年北京市崇文區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

(文) 若,則目標(biāo)函數(shù)z=2x+y的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年北京市崇文區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

(文) 若,則目標(biāo)函數(shù)z=2x+y的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市上海中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷1(文理合卷)(解析版) 題型:解答題

(文) 若,則目標(biāo)函數(shù)z=2x+y的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010年上海市華東師大二附中高三數(shù)學(xué)綜合練習(xí)試卷(10)(解析版) 題型:解答題

(文)若,則目標(biāo)函數(shù)z=x+2y的取值范圍是   
(理)將曲線 ,上所有點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)縮小到原來(lái)的倍后,得到的曲線的焦點(diǎn)坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案