已知分別是橢圓的左、右頂點(diǎn),點(diǎn)在橢圓上,且直線與直線的斜率之積為

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,已知是橢圓上不同于頂點(diǎn)的兩點(diǎn),直線交于點(diǎn),直線交于點(diǎn).① 求證:;② 若弦過(guò)橢圓的右焦點(diǎn),求直線的方程.

 

 

【答案】

(Ⅰ);(Ⅱ)①見(jiàn)解析;②.

【解析】

試題分析:(Ⅰ)根據(jù)點(diǎn)在橢圓上,且直線與直線的斜率之積為,列出方程組即可求出;(Ⅱ)①欲證:,只需證:,找到這個(gè)結(jié)論成立的條件,然后證明這些條件滿足即可;②分成和直線斜率存在兩種情況,利用經(jīng)過(guò)這一條件,把問(wèn)題變成直線與橢圓的交點(diǎn),從而可以借助一元二次方程跟與系數(shù)的關(guān)系解題.

試題解析:(Ⅰ)由題,,由點(diǎn)在橢圓上知,則有:

,①

,                    ②

以上兩式可解得,.所以橢圓.                       4分

(Ⅱ)① 設(shè),則直線、直線,

兩式聯(lián)立消去得:

同理:直線、,聯(lián)立得:.  6分

欲證:,只需證:,只需證:,

等價(jià)于:,

,,所以,

故有:.                                        9分

② (1)當(dāng)時(shí),由可求得:;                     10分

(2)當(dāng)直線斜率存在時(shí),設(shè),

由(Ⅱ)知:,

,代入上式得:,

解得,由①知

綜合(1) (1),,故直線.                      14分.

考點(diǎn):直線與橢圓的方程.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省冀州中學(xué)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)(B卷) 題型:解答題

(12分)已知分別是橢圓的左、右 焦點(diǎn),已知點(diǎn) 滿足,且。設(shè)是上半橢圓上且滿足的兩點(diǎn)。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點(diǎn),橢圓與拋物線有一個(gè)公共的焦點(diǎn),且過(guò)點(diǎn).

()求橢圓的方程;

()設(shè)直線與橢圓相交于、兩點(diǎn),(為坐標(biāo)原點(diǎn)),試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省高二第二學(xué)期期中考試數(shù)學(xué)(理科)試題 題型:填空題

已知分別是橢圓的左、右焦點(diǎn),上頂點(diǎn)為M。若在橢圓上存在一點(diǎn)P,分別連結(jié)PF1,PF2交y軸于A,B兩點(diǎn),且滿足,則實(shí)數(shù)的取值范圍為             

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆山東省高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

已知分別是橢圓的左、右 焦點(diǎn),已知點(diǎn)

 

 滿足,且。設(shè)是上半橢圓上且滿足的兩點(diǎn)。

(1)求此橢圓的方程;

(2)若,求直線AB的斜率。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案