已知函數(shù).

1)證明fx)是奇函數(shù);并求fx)的單調區(qū)間.

2)分別計算f4)-5f2g2)和f9)-5f3g3)的值,由此概括出涉及函數(shù)fx)和gx)的對所有不等于零的實數(shù)x都成立的一個等式,并加以證明.

 

答案:
解析:

解:(1函數(shù)fx)的定義域(-00,+∞)關于原點對稱,又f(-x=.

fx)是奇函數(shù).

x1<x2,x1,x20,+∞),fx1)-fx2=

.

,

fx1)-fx2<0.∴fx)在(0,+∞)上單調遞增.fx)是奇函數(shù),fx)在(-0)上也是單調遞增.∴fx)的單調區(qū)間為(-,0)和(0,+∞.

2)算得f4)-5f2·g2=0f9)-5f3·g3=0.由此概括出對所有不等于零的實數(shù)x有:fx2)-5fx·gx=0.因為:fx2)-5fx·gx=.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xex,其中x∈R.
(Ⅰ)求曲線f(x)在點(x0,x0ex0)處的切線方程
(Ⅱ)如果過點(a,b)可作曲線y=f(x)的三條切線
(1)當-2<a<0時,證明:-
1e2
(a+4)<b<f(a);
(2)當a<-2時,寫出b的取值范圍(不需要書寫推證過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1x
+ax+1-a,a∈R,
(1)若f(x)為奇函數(shù),求a的值;
(2)若a=1,試證f(x)在區(qū)間(0,1]上是減函數(shù);
(3)若a=1,試求f(x)在區(qū)間(0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+ln(x+1)
x
(x>0),
(1)函數(shù)f(x) 在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結論;
(2)證明:當x>0時,f(x)>
3
x+1
恒成立;
(3)試證:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n-3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•唐山一模)已知函數(shù)f(x)=
mx+nex
在x=1處取得極值e-1
(I )求函數(shù)f(x)的解析式,并求f(x)的單調區(qū)間;
(II)當x>0 時,試證:f(1+x)>f(1-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•臨沂二模)已知函數(shù)f(x)=ax-
1
x
-(a+1)lnx(a<1).
(Ⅰ)討論f(x)的單調區(qū)間;
(Ⅱ)若0<a<
1
e
,試證對區(qū)間[1,e]上的任意x1、x2,總有成立|f(x1)-f(x2)|
1
e

查看答案和解析>>

同步練習冊答案