分析 (1)由題意可得:b1=$\frac{1}{{a}_{1}}$=8,bn+1-bn=$\frac{1}{{a}_{n+1}}$-$\frac{1}{a_n}$=$\frac{1-2{a}_{n}}{{a}_{n}}$-$\frac{1}{a_n}$=-2,因此數(shù)列{bn}是等差數(shù)列;
(2)由(1)可知:bn=10-2n,分類當(dāng)1≤n≤5,bn≥0,Sn=$\frac{(8+10-2n)n}{2}$=-n2+9n,當(dāng)n≥6時(shí),bn≤0,Sn=2S5-Sn,即可求得Sn.
解答 (1)證明:b1=$\frac{1}{{a}_{1}}$=8,
∴bn+1-bn=$\frac{1}{{a}_{n+1}}$-$\frac{1}{a_n}$=$\frac{1-2{a}_{n}}{{a}_{n}}$-$\frac{1}{a_n}$=-2,
∴數(shù)列{bn}是以8為首項(xiàng),-2為公差的等差數(shù)列;
(2)解:由(1)可得:bn=8+(-2)(n-1)=10-2n,
當(dāng)1≤n≤5,bn≥0,
Sn=$\frac{(8+10-2n)n}{2}$=-n2+9n,
當(dāng)n≥6時(shí),bn≤0,
Sn=2S5-Sn=2(-25+9×5)+n2-9n=n2-9n+40,
∴Sn=$\left\{\begin{array}{l}{-{n}^{2}+9n}&{1≤n≤5}\\{{n}^{2}-9n+40}&{n≥6}\end{array}\right.$.
點(diǎn)評(píng) 本題考查等差數(shù)列的證明,考查等差數(shù)列通項(xiàng)公式及含有絕對(duì)值的數(shù)列前n項(xiàng)和公式求法,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$ | B. | $f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$ | C. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$ | D. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 方程組有唯一解 | B. | 方程組有唯一解或有無(wú)窮多解 | ||
C. | 方程組無(wú)解或有無(wú)窮多解 | D. | 方程組有唯一解或無(wú)解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com