解:(1)設(shè)等差數(shù)列{log
4(a
n-1)}的公差為d,
所以2log
4(a
2-1)=log
4(a
1-1)+log
4(a
3-1),
即2[log
4(5-1)+d]=log
4(5-1)+log
4(65-1),
得d=1,所以log
4(a
n-1)=1+(n-1)×1=n,得a
n=4
n+1,
由S
n=f(n)=n
2-4n+4=(n-2)
2,
當(dāng)n=1時(shí),b
1=S
1=1,
當(dāng)n≥2時(shí),b
n=S
n-S
n-1=(n-2)
2-(n-3)
2=2n-5,驗(yàn)證n=1時(shí)不滿足此式,所以b
n=
(2)由(1)可得,當(dāng)n=1時(shí),c
1=4×1,
當(dāng)n≥2時(shí),c
n=4
n×(2n-5),
所以T
n=4×1+4
2×(-1)+4
3×1+4
4×3++4
n×(2n-5),①
4T
n=4
2+4
3×(-1)+4
4×1+4
5×3++4
n×(2n-7)+4
n+1×(2n-5),②
①減去②得
-3T
n=-28+4
3×2+4
4×2+4
5×2++4
n×2-4
n+1×(2n-5)=-28+
-4
n+1×(2n-5),
故T
n=
-
+
.
(3)由題意可得d
n=
,
因?yàn)閐
1=-3<0,d
2=1+4=5>0,d
3=-3<0,
所以k=1,k=2時(shí)都滿足d
k•d
k+1<0,
當(dāng)n≥3時(shí),d
n+1-d
n=
-
=
>0,
即當(dāng)n≥3時(shí),數(shù)列{d
n}單調(diào)遞增,
因?yàn)閐
4=-
<0,由d
n=1-
>0,n∈N
*可得n≥5,
可知k=4時(shí)滿足d
k•d
k+1<0,
綜上可知數(shù)列{d
n}中存在3個(gè)異號數(shù).
分析:(1)由于已知等差數(shù)列{log
4(a
n-1)}(n∈N
*),且a
1=5,a
3=65,設(shè)等差數(shù)列{log
4(a
n-1)}的公差為d,利用條件建立方程可以求得得a
n=4
n+1,再有函數(shù)f(x)=x
2-4x+4,設(shè)數(shù)列{b
n}的前n項(xiàng)和為S
n=f(n),利用已知數(shù)列的前n項(xiàng)和求出通項(xiàng)即可;
(2)有(1)可得c
1=4×1,當(dāng)n≥2時(shí),c
n=4
n×(2n-5),利用錯(cuò)位相減法即可求數(shù)列c
n=(a
n-1)•b
n,且{c
n}的前n項(xiàng)和為T
n;
(3)由題意可得d
n=
,代入求的k=1,k=2時(shí)都滿足d
k•d
k+1<0,當(dāng)n≥3時(shí),數(shù)列{d
n}單調(diào)遞增,利用單調(diào)性即可解的.
點(diǎn)評:此題考查了等差數(shù)列的通項(xiàng)公式.已知數(shù)列的前n項(xiàng)和求其通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)的和,有數(shù)列的通項(xiàng)分析該數(shù)列的單調(diào)性,及數(shù)列的函數(shù)特點(diǎn),