函數(shù)在區(qū)間上單調(diào)遞增,且函數(shù)值從增大到,那么函數(shù)圖像與軸交點(diǎn)的縱坐標(biāo)為(   )

A.1                B.             C.             D.

 

【答案】

A

【解析】

試題分析:∵函數(shù)在區(qū)間上單調(diào)遞增,且函數(shù)值從增大到,

=,∴T=π,又T=,∴ω=2,

,∴,

令x=0,有

∴此函數(shù)圖象與y軸交點(diǎn)的縱坐標(biāo)為1.

故選A.

考點(diǎn):本題主要考查余弦型函數(shù)的圖象和性質(zhì)。

點(diǎn)評(píng):中檔題,此類問題,往往通過觀察函數(shù)圖象的特征,確定A,T,通過代入求。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分9分)以下是用二分法求方程的一個(gè)近似解(精確度為0.1)的不完整的過程,請(qǐng)補(bǔ)充完整。

區(qū)間

中點(diǎn)

符號(hào)

區(qū)間長(zhǎng)度

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

解:設(shè)函數(shù),其圖象在上是連續(xù)不斷的,且上是單調(diào)遞______(增或減)。先求_______,______,____________。

所以在區(qū)間____________內(nèi)存在零點(diǎn),再填上表:

下結(jié)論:_______________________________。

(可參考條件:,;符號(hào)填+、-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值

(2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1) 

∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線

,

(2)令,當(dāng)時(shí),

,得

時(shí),的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

當(dāng),即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">

所以在區(qū)間上的最大值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分9分)

  以下是用二分法求方程的一個(gè)近似解(精確度為0.1)的不完整的過程,請(qǐng)補(bǔ)充完整。

區(qū)間

中點(diǎn)

符號(hào)

區(qū)間長(zhǎng)度

解:設(shè)函數(shù)

其圖象在上是連續(xù)不

斷的,且在上是

單調(diào)遞______(增或減)。

先求_______,

______,

____________。

所以在區(qū)間____________內(nèi)存在零點(diǎn),再填上表:

下結(jié)論:_______________________________。

(可參考條件:,;符號(hào)填+、-)

查看答案和解析>>

同步練習(xí)冊(cè)答案