在正三棱錐PABC中,D,E分別是AB,BC的中點,下列結(jié)論:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE,其中錯誤的結(jié)論個數(shù)是( )
如圖,設(shè)P在面ABC內(nèi)射影為O,則O為正三角形ABC的中心.
①可證AC⊥面PBO,所以AC⊥PB;
②AC∥DE,可得AC∥平面PDE ;
③AB與DE不垂直.
選B.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,O為AC與BD的交點,AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若點E為棱PA上一點,且OE∥平面PBC,求
的值;
(2)求證:平面PBC^平面PDC.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
中,底面
是平行四邊形,
,
平面
,
,
,
是
的中點.
(1)求證:
平面
;
(2)若以
為坐標原點,射線
、
、
分別是
軸、
軸、
軸的正半軸,建立空間直角坐標系,已經(jīng)計算得
是平面
的法向量,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱柱
中,
,頂點
在底面
上的射影恰為點
,
.
(1)證明:平面
平面
;
(2 )若點
為
的中點,求出二面角
的余弦值.
(1)證明:平面
平面
;
(2)若點
為
的中點,求出二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
[2013·鄭州模擬]設(shè)α,β,γ為三個不同的平面,m,n是兩條不同的直線,在命題“α∩β=m,n?γ,且________,則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的條件有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
和
是兩條不同的直線,
和
是兩個不重合的平面,下面給出的條件中一定能推出
的是( )
查看答案和解析>>