(2012•江西模擬)有下面四個判斷:
①命題:“設a、b∈R,若a+b≠6,則a≠3或b≠3”是一個假命題
②若“p或q”為真命題,則p、q均為真命題
③命題“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函數(shù)f(x)=ln(a+
2
x+1
)
的圖象關于原點對稱,則a=3
其中正確的個數(shù)共有( 。
分析:①可判斷原命題的逆否命題的真假即可判斷;②若“p或q”為真命題,則p、q至少一個為真命題;③根據(jù)全稱命題的否定為特稱命題可判斷;④由題意可得函數(shù)f(x)為奇函數(shù),由奇函數(shù)的性質可得f(0)=ln(a+2)=0,可求a
解答:解:①命題:若a+b≠6,則a≠3或b≠3的逆否命題為:若a=3且b=3,則a+b=6,為真命題,則原命題是一個真命題;①錯誤
②若“p或q”為真命題,則p、q至少一個為真命題;②錯誤
③根據(jù)全稱命題的否定為特稱命題可知:命題“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2<2(a-b-1);③錯誤
④若函數(shù)f(x)=ln(a+
2
x+1
)
的圖象關于原點對稱,即函數(shù)f(x)為奇函數(shù),由奇函數(shù)的性質可得f(0)=ln(a+2)=0,則a=-1;④錯誤
正確的命題有0個
故選A
點評:本題主要考查了互為逆否命題的真假關系的應用,復合命題的真假判斷及特稱命題與全稱命題的否定關系的應用及奇函數(shù)的性質的應用,屬于知識的綜合應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)球O的球面上有四點S,A,B,C,其中O,A,B,C四點共面,△ABC是邊長為2的正三角形,面SAB⊥面ABC,則棱錐S-ABC的體積的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)在△ABC中,P是BC邊中點,角A、B、C的對邊分別是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,則△ABC的形狀為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)已知數(shù)列{an}是各項均不為0的等差數(shù)列,公差為d,Sn 為其前n項和,且滿足an2=S2n-1,n∈N*.數(shù)列{bn}滿足bn=
1anan+1
,Tn為數(shù)列{bn}的前n項和.
(1)求數(shù)列{an}的通項公式和Tn;
(2)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn,成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,將函數(shù)f(x)向左平移
π
6
個單位后得函數(shù)g(x),設△ABC三個角A、B、C的對邊分別為a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點A作斜率為-1的直線,該直線與雙曲線的兩條漸進線的交點分別為B、C.若
AB
=
1
2
BC
,則雙曲線的離心率是
5
5

查看答案和解析>>

同步練習冊答案