如圖所示,在長方體ABCD-A1B1C1D1中, |AD|=3,|CD|=4,|DD1|=2,作DEACE,求點B1到點E的距離.

建立如圖所示的空間直角坐標系,

由題意得:A(3,0,0),?C(0,4,0)?,B1(3,4,2),

E(x,y,0).在Rt△ADC中,|AD|=3,|CD|=4,|AC|=5,

.

在Rt△ADE中,|DE|2=x·|AD|,

.

在Rt△CDE中,|DE|2=y·|CD|,

.∴.

.


解析:

先建立適當?shù)目臻g直角坐標系,求出點B1E的坐標,再利用空間兩點間的距離公式求出點B1到點E的距離.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M為棱DD1上的一點.
(1)求三棱錐A-MCC1的體積;
(2)當M為中點時,求證:B1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體ABCDABCD′中,截下一個棱錐CADD′,求棱錐CADD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體中,AB=12,BC=6,AA′=5,分別過BCAD′的兩個平行平面將長方體分為體積相等的三個部分,那么FD′等于(  )

A.8        B.6    

C.4        D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體中,AB=12,BC=6,AA′=5,分別過BC和A′D′的兩個平行平面將長方體分為體積相等的三個部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在長方體中,AB=12,BC=6,AA′=5,分別過BC和A′D′的兩個平行平面將長方體分為體積相等的三個部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

同步練習冊答案