在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,
AB
+
AD
OA
,則λ=( 。
A、1B、-1C、2D、-2
分析:在平行四邊形ABCD中,利用平行四邊形法則可得:
AB
+
AD
=
AC
=2
AO
=-2
OA
,
AB
+
AD
OA
,經(jīng)過(guò)比較即可得出.
解答:解:如圖所示,精英家教網(wǎng)
在平行四邊形ABCD中,
AB
+
AD
=
AC
=2
AO
=-2
OA
,
AB
+
AD
OA
,∴λ=-2.
故選:D.
點(diǎn)評(píng):本題考查了向量的平行四邊形法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段CD的中點(diǎn),若
AC
=
a
,
BD
=
b
,則
AE
=
 
.(用
a
、
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•天津模擬)在平行四邊形ABCD中,
AE
=
1
3
AB
,
AF
=
1
4
AD
,CE與BF相交于G點(diǎn).若
AB
=
a
,
AD
=
b
,則
AG
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,邊AB所在直線方程為2x-y-3=0,點(diǎn)C(3,0).
(1)求直線CD的方程;
(2)求AB邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,點(diǎn)E為CD中點(diǎn),
AB
=
a
,
AD
=
b
,則
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)一模)在平行四邊形ABCD中,若
AB
=(1,3)
,
AC
=(2,5)
,則向量
AD
的坐標(biāo)為
(1,2)
(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案