【題目】若向量 ,在函數(shù) 的圖象中,對稱中心到對稱軸的最小距離為 ,且當(dāng) 的最大值為1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

【答案】解:(I)由題意得 =

=

=

=

∵對稱中心到對稱軸的最小距離為

∴f(x)的最小正周期為T=π∴ ,∴ω=1…

,

3+t

,∴3+t=1,∴

(II)


【解析】(I)利用函數(shù) 求出向量的數(shù)量積,利用二倍角公式以及兩角差的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,通過對稱中心到對稱軸的最小距離為 ,求出函數(shù)的周期,得到ω,利用 的最大值為1.

求出t,得到函數(shù)的解析式.(II)利用正弦函數(shù)的單調(diào)增區(qū)間,求函數(shù)f(x)的單調(diào)遞增區(qū)間,即可.

【考點精析】利用正弦函數(shù)的單調(diào)性對題目進(jìn)行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)x,y滿足x2+y2﹣6x+8y﹣11=0,則 的最大值= , |3x+4y﹣28|的最小值=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(
A.若事件A與事件B互斥,則事件A與事件B對立
B.函數(shù)y= (x∈R)的最小值為2
C.若直線(m+1)x+my﹣2=0與直線mx﹣2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,直線l:x﹣ty﹣2=0.
(1)若直線l與曲線y=f(x)有且僅有一個公共點,求公共點橫坐標(biāo)的值;
(2)若0<m<n,m+n≤2,求證:f(m)>f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足條件:a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設(shè)bn=a2n1+a2n(n=1,2,…).
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求bn ,其中Sn=b1+b2+…+bn;
(3)設(shè)r=219.2﹣1,q= ,求數(shù)列{ }的最大項和最小項的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m是一個給定的正整數(shù),m≥3,設(shè)數(shù)列{an}共有m項,記該數(shù)列前i項a1 , a2 , …,ai中的最大項為Ai , 該數(shù)列后m﹣i項ai+1 , ai+2 , …,am中的最小項為Bi , ri=Ai﹣Bi(i=1,2,3,…,m﹣1);
(1)若數(shù)列{an}的通項公式為 (n=1,2,…,m),求數(shù)列{ri}的通項公式;
(2)若數(shù)列{an}滿足a1=1,r1=﹣2(i=1,2,…,m﹣1),求數(shù)列{an}的通項公式;
(3)試構(gòu)造項數(shù)為m的數(shù)列{an},滿足an=bn+cn , 其中{bn}是公差不為零的等差數(shù)列,{cn}是等比數(shù)列,使數(shù)列{ri}是單調(diào)遞增的,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD的邊長為12,∠BAD=60°,AC與BD交于O點.將菱形ABCD沿對角線AC折起,得到三棱錐B﹣ACD,點M是棱BC的中點,DM=6
(I)求證:平面ODM⊥平面ABC;
(II)求二面角M﹣AD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點P(1,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則關(guān)于x的方程[f(x)]2﹣f(x)+a=0(a∈R)的實數(shù)解的個數(shù)不可能是(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊答案