【題目】如圖,在四棱錐中,底面是正方形, 與交于點, 底面,為的中點.
(1).求證: 平面;
(2).求證: .
【答案】(1)見解析;(2)見解析.
【解析】分析:(1)根據(jù)三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得結論,(2)由正方形性質(zhì)得.由線面垂直性質(zhì)得.再根據(jù)線面垂直判定定理得平面.即得結論.
詳解:
1.如圖,連接.由四邊形是正方形可知,點為的中點.
又為的中點,所以.
又平面,面,所以平面.
2.因為底面,底面,所以.
由四邊形是正方形可知, .
又,平面,平面,所以平面.
因為平面,所以.
點睛:垂直、平行關系證明中應用轉(zhuǎn)化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點為原點,焦點為F(1,0),過焦點的直線與拋物線交于A,B兩點,過AB的中點M作準線的垂線與拋物線交于點P,若|AB|=6,則點P的坐標為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某服裝超市舉辦了一次有獎促銷活動,顧客消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性抽出3個小球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球則打6折,若摸到1個紅球,則打7折;若沒有摸到紅球,則不打折;
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回的摸取,連續(xù)3次,每摸到1個紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,則該顧客選擇哪種抽獎方案更合適?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學的高二(1)班男同學有名,女同學有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.
(1)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(2)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直角梯形ACDE與等腰直角三角形ABC所在平面互相垂直,F為BC的中點,, ,.
(1)求證:平面平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共 個,生產(chǎn)一個衛(wèi)兵需 分鐘,生產(chǎn)一個騎兵需 分鐘,生產(chǎn)一個傘兵需 分鐘,已知總生產(chǎn)時間不超過 小時,若生產(chǎn)一個衛(wèi)兵可獲利潤 元,生產(chǎn)一個騎兵可獲利潤 元,生產(chǎn)一個傘兵可獲利潤 元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù) 與騎兵個數(shù) 表示每天的利潤 (元);
(2)怎么分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com