函數(shù)f(x)的定義域是R,若f(x+1)是奇函數(shù),是f(x+2)偶函數(shù).下列四個結(jié)論:
①f(x+4)=f(x); ②f(x)的圖象關(guān)于點(2k,0)(k∈Z)對稱; ③f(x+3)是奇函數(shù); ④f(x)的圖象關(guān)于直線x=2k+1(k∈Z)對稱.其中正確命題的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:①由f(x+2)偶函數(shù)可得f(x+2)=f(-x+2);由f(x+1)奇函數(shù)可得f(x+1)=-f(-x+1),結(jié)合兩個條件可判斷f(x+4)=f(x)是否成立
②由f(x+1)是奇函可得函數(shù)f(x)的圖象關(guān)于(1,0)對稱,而(2k,0)中沒有(1,0)點,可判斷②
③由f(x+1)奇函數(shù)可得f(x+1)=-f(-x+1),結(jié)合f(x+4)=f(x)可判斷
④由f(x+2)是偶函可知函數(shù)f(x)的圖象關(guān)于x=2對稱,而x=2k+1中不包含x=2,可判斷
解答:解:①∵f(x+2)偶函數(shù)
∴f(x+2)=f(-x+2)
∵f(x+1)奇函數(shù)
∴f(x+1)=-f(-x+1)
∴f[(x+1)+1]=-f(-(x+1)+1)=-f(-x)
即f(x+2)=-f(-x)
∴f(-x+2)=f(x+2)=-f(-x)
即f(t+2)=-f(t)
∴f(t+4)=-f(t+2)=f(t)
∴f(x+4)=f(x),故①正確
②由f(x+1)是奇函可得函數(shù)f(x)的圖象關(guān)于(1,0)對稱,而(2k,0)中沒有(1,0)點,故②錯誤
③考察f(x+3)+f(-x+3)
∵f(x+1)奇函數(shù)∴f(x+1)=-f(-x+1)∴f(x-2+1)=-f(-(x-2)+1)=-f(-x+3)f(-x+3)=-f(x-1)又由于已經(jīng)證明f(x+4)=f(x)∴f(x+3)=f(x-1)
∴f(x+3)+f(-x+3)=f(x-1)-f(x-1)=0 即f(x+3)是奇函數(shù),故③正確
④由f(x+2)是偶函可知函數(shù)f(x)的圖象關(guān)于x=2對稱
而x=2k+1中不包含x=2,故④錯誤
故選B
點評:本題主要考查了抽象函數(shù)的函數(shù)的奇偶函數(shù)對稱性的應用,函數(shù)的周期性的應用,解答本題要求考生應用函數(shù)的性質(zhì)的能力要強