已知函數(shù)x=1處取得極值,在x=2處的切線平行于向量
(1)求a,b的值,并求的單調區(qū)間;
(2)是否存在正整數(shù)m,使得方程在區(qū)間(m,m+1)內有且只有兩個不等實根?若存在,求出m的值;若不存在,說明理由.
解:(1)
  …………4分
(2)由(1)得

上單調遞增.
上單調遞減…………8分
(3)方程


是單調減函數(shù);
是單調增函數(shù);

∴方程內分別有唯一實根.  …………12分
∴存在正整數(shù)m=1,使得方程在區(qū)間(1,2)上有且只有兩個不相等的實數(shù)根.   ……………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)
(1)求函數(shù)的最大值;
(2)當時,求證;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與直線平行的拋物線的切線方程是
A.2xy+3=0B.2xy3=0
C.2xy+1=0D.2xy1=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 已知函數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求函數(shù)的單調區(qū)間;
(Ⅱ)若對于都有成立,試求的取值范圍;
(Ⅲ)記.當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求在點處的切線方程;
(2)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)的圖象與直線12x+y-1=0相切于點(1,-11),則a+b的值為(  )
A.-1B.-2C.-3D.-11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)y=-x3bx2-(2b+3)x+2-b在R上不是單調減函數(shù),則b的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知
(1)求的最小值;
(2)求的單調區(qū)間;
(3)證明:當時,成立。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的單調遞減區(qū)間           

查看答案和解析>>

同步練習冊答案