如圖,已知三棱錐P—ABC的三條側棱兩兩垂直,P在底面ABC內(nèi)的射影為H,求證:△APB的面積是△ABC和△AHB的面積的比例中項.

證明:∵PA、PB、PC兩兩垂直,∴H為△ABC的垂心.連結CH并延長交AB于D,連結PD,由三垂線定理知PD⊥AB.

由條件知,PC⊥面ABP,∴PC⊥PD.

在Rt△CPD中,由射影定理,得PD2=CD·HD.

AB2·PD2=AB·CD·AB·HD,

即S△APB2=S△ABC·S△AHB.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐P-ABC中,PA⊥平面ABC,AN⊥BC于N,D是AB的中點,且PA=1,AN=BN=CN=
2

(1)求證:PB⊥AC;
(2)求異面直線CD與PB所成角的大;
(3)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱錐P-ABC中,PA⊥面ABC,其中正視圖為Rt△PAC,AC=2
6
,PA=4,俯視圖也為直角三角形,另一直角邊長為2
2

(1)畫出側視圖并求側視圖的面積;
(2)求三棱錐P-ABC體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱錐P-ABC的側面PAB是等邊三角形,D是AB的中點,PC=BC=AC=2,PB=2
2

(1)證明:AB⊥平面PCD;
(2)求點C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB中點,M為PB的中點,且△PDB是正三角形,PA⊥PC.
(I)求證:DM∥平面PAC;
(II)求證:平面PAC⊥平面ABC;
(Ⅲ)求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•河西區(qū)二模)如圖,已知三棱錐P-ABC中,底面△ABC是邊長為4
2
的等邊三角形,又PA=PB=2
6
,PC=2
10

(I)證明平面PAB⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值.

查看答案和解析>>

同步練習冊答案